首页>章节选题>选修4-1
更多:
显示答案
| 共计 1805 道试题
同步
在平面直角坐标系中,eqIdeb53cb7cb0274f7d8f111c60f824c243分别是eqIda9cd3f94eb8045438f75e9daccfa7200轴和eqId072d7d6b911b42bc89207e72515ebf5f轴上的动点,若以eqId99a3187c2b8f4bcc9703c74c3b72f1f3为直径的圆eqId19a4eb16029e4550a14f2afe4741a3c3与直线eqId40468ca3395e454994bec92703c53ca5相切,则圆eqId19a4eb16029e4550a14f2afe4741a3c3面积的最小值为()
A.eqId1b80a2c350bf4aed91486381971ac9feB.eqId28989c9790ee488281c168c076580751C.eqIde2f4f1ed38f2421a9c97a95670db8dcbD.eqId1562ae04d9fc49d591f7824cdb9d40b4
用反证法证明命题“三角形的内角中至少有一个角不大于eqIdf1c3337151994ec4b99354c9d54f311c”时,应假设(   )
A.三角形的三个内角都不大于eqIdf1c3337151994ec4b99354c9d54f311cB.三角形的三个内角都大于eqIdf1c3337151994ec4b99354c9d54f311c
C.三角形的三个内角至多有一个大于eqIdf1c3337151994ec4b99354c9d54f311cD.三角形的三个内角至少有两个大于eqIdf1c3337151994ec4b99354c9d54f311c
更新:2020/08/31 |题型:单选题 |组卷:20|引用[71]
同步
已知等差数列eqId93e38ecd74a24cb59da79181b95bfd3a满足:eqId21ad4ded655f4be08767e73cf9623e3feqId4156bea46f8744fcbaa420de850de732eqId93e38ecd74a24cb59da79181b95bfd3a的前n项和为eqIddb5481de79c946c0a760143297d5eade
(Ⅰ)求eqIdef9cef8e6d054d8dac46b8cde14953adeqIddb5481de79c946c0a760143297d5eade
(Ⅱ)令eqId1a40eb64ba9048f6b3a80edd9c4df2aeeqIdac914a4ac0794d69bc61a02682f9d319),求数列eqIdeeb4ca98872f4e6d91cea28f43fc0b63的前eqIdf458db68122849abb588feb2e682d9ac项和eqId92ed363a54bd4a8a93df9463bb3af1f5
更新:2020/08/30 |题型:解答题 |组卷:6197|引用[37]
已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于MN两点.
(1)求k的取值范围;
(2)若eqIda99ec903e0494c34aba0a98ec878f029=12,其中O为坐标原点,求|MN|.
更新:2020/09/10 |题型:解答题 |组卷:10648|引用[27]
如图,直线PQ与⊙O相切于点A,AB是⊙O的弦,∠PAB的平分线AC交⊙O于点C,连结CB,并延长与直线PQ相交于点Q,若AQ=6,AC=5.

(Ⅰ)求证:QC2﹣QA2=BCQC;
(Ⅱ)求弦AB的长.
在平面直角坐标系中,将曲线eqIdcfc8599bedfb4ab4944abf141f348a9a上的每一个点的横坐标保持不变,纵坐标缩短为原来的eqId767acf51abfd4d97a757561d1a882151,得到曲线eqId3a63d00111554b9e8b896929779a293d,以坐标原点eqId2efda802d5534f6d92d9f8af7aaec28b为极点,eqIdc12aac8c2448479687a40735b3572a23轴的正半轴为极轴,建立极坐标系,eqIdcfc8599bedfb4ab4944abf141f348a9a的极坐标方程为eqIdde4cad1aa0f043bcb0881298b58df974.
(1)求曲线eqId3a63d00111554b9e8b896929779a293d的参数方程;
(2)过原点eqId2efda802d5534f6d92d9f8af7aaec28b且关于eqId072d7d6b911b42bc89207e72515ebf5f轴对称的两条直线eqId74c7e0292b094e54ae596d37798a05edeqId439fb93f7745417b8bb1747d963c6e60分别交曲线eqId3a63d00111554b9e8b896929779a293deqId251435fb598d4f18aebb61e29b5ca4e2eqIde1fa964eb5db494dbc2b48ce4fc81c8a,且点eqIdcc614bd3390c4d028df189b234dcc351在第一象限,当四边形eqId5ce7a06ae7a34393b92b5277978ac014周长最大时,求直线eqId74c7e0292b094e54ae596d37798a05ed的普通方程.