组卷网 > 试卷详情页

数学建模-指数函数模型的应用
全国 高一 课时练习 2022-07-26 295次 整体难度: 一般 考查范围: 函数与导数

一、解答题添加题型下试题

解答题 | 一般(0.65) | 2022·全国·高一课时练习
同步
1. 观察实际情景,提出并分析问题
(1)实际情景
2022年2月,某地发生了新冠肺炎疫情,新冠肺炎是一种传染病,其传染过程的强度和广度分为:(1)散发:是指传染病在人群中散在发生;(2)流行:是指某一地区或某一单位,在某一时期内,某种传染病的发病率,超过了历年同期的发病水平;(3)大流行:指某种传染病在一个短时期内迅速传播、蔓延,超过了一般的流行强度;(4)暴发:指某一局部地区或单位,在短期内突然出现众多的同一种疾病的病人. 如果在新冠肺炎传染的过程中不认为介入,切断其传染链,则对整个社会经济的发展带来严重的后果.
(2)提出问题
如果没有人工干预,不同时间段内的病例数会按照怎样的规律进行增长呢,对于某个时间内新增的病例数是否可以预测,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失呢?
(3)分析问题
可以通过收集合适地区的新增病例数并结合建立适当的数学模型,找出病例数增长规律,并对一定时间后新增病例进行估计以支持卫生部门的防疫工作.
2.收集数据
利用互联网等信息技术,我们可以搜索到一些原始的数据.
例如,我们搜集到某地区一周内的累计病例数,
日期

1

2

3

4

5

6

7

新增
病例数


请结合上述数据建立合理的数学模型,并估计第9天新增病例数.
3.分析数据
累计病例数是时间的函数,但没有现成的函数模型.因此,可以先画出散点图,利用图象直观分析这组数据的变化规律,从而帮助我们选择函数类型,散点图如图所示:

当然,我们可以利用信息技术,通过函数拟合的方法来帮助选择适当的函数模型.
4.建立模型
根据散点图的形状可设函数模型近似为,利用表中的数据可求.
5.检验模型
画出函数的图形,对比散点图,吻合度很好.

6.问题解决
该地区病例数与时间t基本满足的函数关系,第9天时,预计新增病例数为:,我们会发现累计病例数急剧增加,需卫生防疫部门及时介入,采取相应阻断措施.
7.问题拓展
在上述模型的建立的过程中,我们根据散点图选择了函数模型,然后利用其中的两个点求出模型的两个参数,随着点的选择的不同,所得函数的模型也相异,那么请同学利用课余时间思考如何评价不同模型的优劣?

二、单选题添加题型下试题

单选题 | 容易(0.94) | 2022·全国·高一课时练习
同步
2. 我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c(t)(单位:mg/L)随着时间t(单位:h)的变化用指数模型描述,假定某药物的消除速率常数(单位:),刚注射这种新药后的初始血药含量,且这种新药在病人体内的血药含量不低于1000mg/L时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为(       )(参考数据:
A.5.32hB.6.23hC.6.93hD.7.52h
单选题 | 容易(0.94) | 2022·全国·高一课时练习
同步
3. 2021年,郑州大学考古科学队在荣阳官庄遗址发现了一处大型青铜铸造作坊.利用碳14测年确认是世界上最古老的铸币作坊.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足表示碳14原有的质量).经过测定,官庄遗址青铜布币样本中碳14的质量约是原来的,据此推测青铜布币生产的时期距今约多少年?(       )(参考数据:
A.2600年B.3100年C.3200年D.3300年

三、解答题添加题型下试题

解答题 | 容易(0.94) | 2022·全国·高一课时练习
同步
4. 大气压强,它的单位是“帕斯卡”(),已知大气压强随高度的变化规律是是海平面大气压强,.当地高山上一处大气压强是海平面处大气压强的,求高山上该处的海拔.
解答题 | 较易(0.85) | 2022·全国·高一课时练习
同步
5. 牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度间的关系为指数型函数,若牛奶放在0℃的冰箱中,保鲜时间约是192h,而在22℃的厨房中则约是42h.
(1)写出保鲜时间y(单位:h)关于储藏温度x(单位:℃)的函数解析式;
(2)利用(1)中结论,指出温度在30℃和16℃的保鲜时间;(参考数据,精确到1h)
(3)运用上面的数据,作此函数的图象.

试卷分析

整体难度:一般
考查范围:函数与导数

试卷题型(共 5题)

题型
数量
解答题
3
单选题
2

试卷难度

知识点分析

序号
知识点
对应题号
1
函数与导数
1,2,3,4,5

细目表分析 导出

题号 难度系数 详细知识点
一、解答题
10.65指数函数模型的应用(2)
40.94指数函数模型的应用(1)  指数式与对数式的互化
50.85指数函数模型的应用(1)  指数函数图像应用
二、单选题
20.94指数函数模型的应用(1)
30.94指数幂的运算  指数函数模型的应用(1)  由指数函数的单调性解不等式