组卷网>知识点选题>概率与分布
知识点
解析
| 共计 13740 道试题
1 . 下面给出了根据我国年—2022年水果人均占有量(单位:kg)和年份代码绘制的散点图和线性回归方程的残差图(2016年—2022年的年份代码分别为1~7).

(1)根据散点图分析之间的相关关系;
(2)根据散点图相应数据计算得,求关于的线性回归方程(数据精确到);
(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.
附:回归方程中的斜率和截距的最小二乘法估计公式分别为
2 . 在区间上任取一个实数,使得函数的值域为的概率为(       
A.B.C.D.
3 . 任取一个三位正整数,则是一个正整数的概率为(       
A.B.C.D.
4 . 某高中生参加社会实践活动,对某公司1月份至6月份销售某种机器配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:
月份123456
销售单价(元/件)99.51010.5118
销售量(件)111086514.2

(1)根据1至5月份的数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与剩下的检验数据的误差不超过0.5,则认为所得到的线性回归方程是理想的,试问(1)中所得到的线性回归方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元/件,才能获得最大利润?(注:销售利润=销售收人-成本).
参考公式.参考数据:.
5 . 女排世界杯比赛采用5局3胜制,前4局比赛采用25分制,每个队只有赢得至少25分,并同时超过对方2分时,才胜1局;在决胜局(第五局)采用15分制,每个队只有赢得至少15分,并领先对方2分为胜.在每局比赛中,发球方赢得此球后可得1分,并获得下一球的发球权,否则交换发球权,并且对方得1分.现有甲乙两队进行排球比赛.
(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来的每局比赛甲队获胜的概率为,求甲队最后赢得整场比赛的概率;
(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各14分,且甲已获得下一发球权.若甲发球时甲赢1分的概率为,乙发球时甲赢1分的概率为,得分者获得下一个球的发球权.求两队打了个球后,甲队赢得整场比赛的概率.
6 . 已知某中学共有学生人,男女比例为,该中学体育协会为了解乒乓球运动和性别的关联性,通过调查统计,得到了如下数据:

男生

女生

合计

喜欢打乒乓球

不喜欢到乒乓球

合计


(1)以频率估计概率,请估计该校女生喜欢打乒乓球的人数;
(2)能否在犯错误的概率不超过的前提下认为“该中学的学生喜欢打乒乓球与性别有关”?
附:,其中.


7 . 某高科技公司为加强自主研发能力,研发费用逐年增加,统计最近6年的研发费用y(单位:亿元)与年份编号x得到样本数据,令,并将绘制成下面的散点图.若用方程yx的关系进行拟合,则(       
A.B.C.D.
8 . 为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对学生体育锻炼的经常性有影响,为此随机抽查了男女生各100名,得到如下数据:
性别锻炼
不经常经常
女生4060
男生2080

(1)依据的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;
(2)从这200人中随机选择1人,已知选到的学生经常参加体育锻炼,求他是男生的概率;
(3)为了提高学生体育锻炼的积极性,集团设置了“学习女排精神,塑造健康体魄”的主题活动,在该活动的某次排球训练课上,甲乙丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求第次传球后球在甲手中的概率.
附:
0.0100.0050.001
6.6357.87910.828

9 . 某种工程车随着使用年限的增加,每年的维修费用也相应增加,根据相关资料可知该种工程车自购人使用之日起,前5年中每年的维修费用如下表所示.已知具有线性相关关系.
年份序号12345
维修费用(万元2

参考数据:.参考公式:线性回归方程的斜率和截距的最小二乘法估计分别为
(1)求关于的线性回归方程;
(2)根据实际用车情况,若某辆工程车每年维修费用超过4万元时,可以申请报备更换新车,请根据回归方程预估一辆该种工程车一般使用几年后可以申请报备更换新车.
10 . 某足球俱乐部在对球员的使用上总是进行数据分析,在2022年度赛季中,为了考查甲球员对球队的贡献度,现作如下数据统计:

球队胜

球队负

总计

甲参加

8

30

甲未参加

8

总计

20


(1)求r,s的值,据此能否有95%的把握认为球队胜利与甲球员参赛有关;.
(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.3、0.5、0.1、0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.4、0.2、0.6、0.2.则:
①当他参加比赛时,求球队某场比赛输球的概率;
②当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;
③如果你是教练员,应用概率统计有关知识,该如何合理安排乙球员的参赛位置?
附表及公式:

P(K²≥k)

0.15

0.10

0.05

0.010

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828