组卷网>知识点选题>利用基本不等式求最值或值域
显示知识点
显示答案
| 共计 3735 道试题
1 . 已知函数,且,则的最小值为______
2 . 某呼吸机生产企业本年度计划投资固定成本2300(万元)引进先进设备,用于生产救治新冠患者的无创呼吸机,每生产(单位:百台)另需投入成本(万元),当年产量不足50(百台)时,(万元;当年产量不小于50(百台)时, (万元),据以往市场价格,每百台呼吸机的售价为600 万元,且依据疫情情况,预测该年度生产的无创呼吸机能全部售完.
(1)求年利润(万元) 关于年产量(百台)的函数解析式;(利润销售额一投入成本固定成本)
(2)当年产量为多少时,年利润最大? 并求出最大年利润.
3 . 已知函数为偶函数.
(1)求的值;
(2)求的最小值;
(3)若恒成立,求实数的取值范围.
解答题 | 一般(0.65) | 2022·浙江·无高一期末
4 . 某地空气中出现污染,须喷洒一定量的去污剂进行处理,据测算,每喷洒1个单位的去污剂,空气中释放的浓度(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的㳖度之和,由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(1)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(2)若第一次喷洒2个单位的去污剂,6天后再喷洒个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值.(精确到0.1,参考数据:取1.4)
6 . 在新型冠状病毒感染的肺炎治疗过程中,需要某医药公司生产的某种药品.此药品的年固定成本为200万元,每生产x千件需另投入成本,当年产量不足60千件时,(万元),当年产量不小于60千件时,(万元).每千件商品售价为50万元,在疫情期间,该公司生产的药品能全部售完.
(1)写出利润(万元)关于年产量 x(千件)的函数解析式;
(2)该公司决定将此药品所获利润的10%用来捐赠防疫物资,当年产量为多少千件时,在这一药品的生产中所获利润最大?此时可捐赠多少万元的物资款?
7 . 为贯彻党中央、国务院关于“十三五”节能减排的决策部署,2022年某企业计划引进新能源汽车生产设备.通过市场分析,全年需投人固定成本2500万元,生产百辆需另投人成本万元.由于起步阶段生产能力有限,不超过120,且经市场调研,该企业决定每辆车售价为8万元,且全年内生产的汽车当年能全部销售完.
(1)求2022年的利润(万元)关于年产量(百辆)的函数关系式(利润销售额-成本);
(2)2022年产量为多少百辆时,企业所获利润最大?并求出最大利润.
8 . 2021年12月3日中老铁路全线开通运营,线路全长公里,北起中国昆明,南至老挝万象,给群众出行带来巨大便利,也极大促进了区域社会经济的发展.已知该条线路通车后,列车的平均发车时间间隔(单位:分钟)满足,经市场调研测算,列车载客量与平均发车时间间隔相关,当时列车为满载状态,载客量为人;当时,载客量会减少,减少的人数为,且平均发车时间间隔为分钟时的载客量为人,记列车载客量为
(1)求的表达式,并求当平均发车时间间隔为分钟时,列车的载客量;
(2)若该线路每分钟的净收益为(元),问当平均发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.
9 . 函数的最小值是(       
A.B.C.D.
10 . 已知函数,则(       
A.当且仅当时,有最小值为
B.当且仅当时,有最小值为
C.当且仅当时,有最大值为
D.当且仅当时,有最大值为