组卷网>知识点选题>利用频率分布直方图求平均数、中位数和众数
显示知识点
显示答案
| 共计 1212 道试题
1 . 某校高二(5)班在一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在分的学生数有14人.

(1)求总人数和分数在的人数
(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?
(3)现在从分数在分的学生(男女生比例为1:2)中任选2人,求其中至多含有1名男生的概率.
2 . 为了调查90后上班族每个月的休假天数,研究人员随机抽取了1000名90后上班族作出调查,所得数据统计如下图所示.

(1)求的值以及这1000名90后上班族每个月休假天数的平均数(同一组中的数据用该组区间的中点值作代表);
(2)为研究90后上班族休假天数与月薪的关系,从上述1000名被调查者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有%的把握认为休假天数与月薪有关.


月休假不超过6天

月休假超过6天

合计

月薪超过5000

90



月薪不超过5000



140

合计



300


0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828


参考公式:
解答题 | 一般(0.65) | 2021·全国·模拟预测
3 . 随着生活水平的提高,人们对生活质量的要求也逐步提高,尤其是在饮食方面,虾因营养又美味而受到不少人的青睐.罗氏沼虾食性杂,生长快,易养殖,市场前景好,现已成为我国重点发展的特优水产品之一,不仅池塘养殖有了较大发展,而且稻田养殖也获得了成功.某养殖户有多个养虾池,每个虾池投放40000尾虾苗,成活率均为75%,到售卖时会存在一定的个体差异.为了解某虾池虾的具体生长情况,从该虾池中随机捕捉200尾测量其长度(单位:),得到频率分布直方图,如图所示:

(1)试利用样本估计总体的思想估计该虾池虾的平均长度.
(2)已知该虾池虾的长度均在之间,根据虾的长度将虾分为四个等级,长度、等级与售价(单位:元/尾)之间的关系如下表():

长度/





等级

三级

二级

一级

特级

/(元/尾)





①从该虾池中随机捕捉4尾虾,试求至少有2尾为特级虾的概率;
②若该虾池的前期修建成本为40000元,购买相关设备的成本为7150元,虾苗0.65元/尾,每茬虾的养殖成本为6500元.假设每茬虾的利润相同,在不考虑维修成本的前提下,试问该虾池至少需养几茬虾才能盈利?
更新:2021/12/05组卷:29
4 . 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:

(1)求频率分布直方图中a的值;
(2)根据频率分布直方图估计20名学生数学成绩的中位数(保留一位小数)和平均值(每组用组中值估计);
(3)从成绩在的学生任选2人,求此2人的成绩都在中的概率.
5 . 治理沙漠离不开优质的树苗,现从苗圃中随机地抽测了200株树苗的高度(单位:cm),得到以下频率分布直方图.

(1)求直方图中a的值及众数、中位数;
(2)若树高185cm及以上是可以移栽的合格树苗.从样本中按分层抽样方法抽取20株树苗作进一步研究,不合格树苗、合格树苗分别应抽取多少株?
6 . 为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成AB两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

C为事件:“乙离子残留在体内的百分比不低于5.5”,且根据直方图得到C为事件概率的估计值为0.70.
(1)求乙离子残留百分比直方图中ab的值;
(2)分别估计甲离子残留百分比的中位数和乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表)
7 . 某城市计划兴建一座至多安装3台污水处理设备的城市污水处理厂,根据过去统计资料显示,污水每天需处理量X(单位:万立方米)都在[20,80]之间,现统计了过去一个月每天需处理的污水量(单位:万立方米),其频率分布直方图如图:

污水处理厂希望安装的设备尽可能运行,但每天设备最多可运行台数受每天需处理的污水量X限制并有如下关系:

每天污水量X

设备最多可运行台数ξ

1

2

3


将每天污水量在以上三段的频率作为相应段的概率,
(1)根据直方图,估计每天需处理污水量的平均值;
(2)若某台设备运行,则该台设备每天产生利润5万元;若某台设备未运行,则该台设备每天亏损0.8万元.设某一天污水处理厂的利润为Y(单位:万元),当安装3台设备时,写出Y的所有可能值,并估计Y>8的概率;
8 . 在某次高中学科知识竞赛中,对4000名考生的参赛,频率/组距成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为,60分以下视为不及格,若同一组中数据用该组区间中间值作代表值,则下列说法中错误的是( )
A.成绩在的考生人数最多B.考生竞赛成绩的平均分约为70.5分
C.考生竞赛成绩的中位数为75分D.不及格的考生人数为1000
9 . 在技术人员的指导下,某棉花种植基地的棉花产量和质量均有大幅度地提升,已知该棉花种植基地今年产量为,技术人员随机抽取了棉花,测量其马克隆值(棉花的马克隆值是反映棉花纤维细度与成熟度的综合指标,是棉纤维重要的内在质量指标之一,与棉花价格关系密切),得到如下统计表及不完整的频率分布直方图.

马克隆值










质量/ t

0.04

0.06

0.12

0.16

b

a

0.06

0.03

0.01



(1)求表中的值,并补全频率分布直方图;
(2)根据频率分布直方图,估计样本的马克隆值的众数及中位数;
(3)根据马克隆值可将棉花分为三个等级,不同等级的棉花价格如下表所示:

马克隆值

级别

价格(万元/t

1.6

1.52

1.44


用样本估计总体,估计该棉花种植基地今年的总产值.
10 . 全世界人们越来越关注环境保护问题,某监测站点于2016年8月某日起连续n天监测空气质量指数(AQI),数据统计如下:

空气质量指数(






空气质量等级

空气优

空气良

轻度污染

中度污染

重度污染

天数

20

40

m

10

5


(1)根据所给统计表和频率分布直方图中的信息求出nm的值,并完成频率分布直方图;
(2)由频率分布直方图求该组数据的平均数与中位数;
(3)在空气质量指数分别属于监测数据中,用分层抽样的方法抽取5天,再从中任意选取2天,求事件A“两天空气都为良”发生的概率.