解题方法
1 . 热心网友们调查统计了柳州市某网红景点在2022年6月至10月的旅游收入y(单位:万元),得到以下数据:
(1)根据表中所给数据,用相关系数r加以判断,是否可用线性回归模型拟合y与x的关系?若可以,求出y关于x之间的线性回归方程;若不可以,请说明理由;
(2)为调查游客对该景点的评价情况,网友们随机抽查了200名游客,得到如图列联表,请填写2×2列联表,并判断能否有99.9%的把握认为“游客是否喜欢该网红景点与性别有关联”?
参考数据:
,
注:r与
的计算结果精确到0.001.参考公式:相关系数
,
线性回归方程:
,其中
,
,
.
临界值表:
月份x | 6 | 7 | 8 | 9 | 10 |
旅游收入y | 10 | 12 | 11 | 12 | 20 |
(1)根据表中所给数据,用相关系数r加以判断,是否可用线性回归模型拟合y与x的关系?若可以,求出y关于x之间的线性回归方程;若不可以,请说明理由;
(2)为调查游客对该景点的评价情况,网友们随机抽查了200名游客,得到如图列联表,请填写2×2列联表,并判断能否有99.9%的把握认为“游客是否喜欢该网红景点与性别有关联”?
喜欢 | 不喜欢 | 总计 | |
男 | 100 | ||
女 | 60 | ||
总计 | 110 |
参考数据:

注:r与


线性回归方程:




临界值表:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
您最近半年使用:0次
2 . 某地区2015年至2021年居民家庭人均存款y(单位:万元)数据如下表:
变量x,y具有线性相关关系.
(1)求y关于x的线性回归方程,并预测2022年该地区居民家庭人均存款;
(2)若由线性回归方程得到的估计数据与检测数据的误差为0,则称该数据为“完美数据”现从这些数据中随机抽取2个,设X为抽到的“完美数据”的个数,求X的分布列和数学期望.
参考公式:回归直线方程
的斜率和截距的最小二乘法估计公式分别为:
.
年份 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均存款y | 1.4 | 1.8 | 2.1 | 2.9 | 3.3 | 3.7 | 4.4 |
变量x,y具有线性相关关系.
(1)求y关于x的线性回归方程,并预测2022年该地区居民家庭人均存款;
(2)若由线性回归方程得到的估计数据与检测数据的误差为0,则称该数据为“完美数据”现从这些数据中随机抽取2个,设X为抽到的“完美数据”的个数,求X的分布列和数学期望.
参考公式:回归直线方程


您最近半年使用:0次
解题方法
3 . 第24届冬奥会于2022年2月4日在北京市和张家口市联合举行,此项赛事大大激发了国人冰雪运动的热情.某滑雪场在冬奥会期间开业,下表统计了该滑雪场开业第
天的滑雪人数
(单位:百人)的数据.
经过测算,若一天中滑雪人数超过3500人时,当天滑雪场可实现盈利,请建立
关于
的回归方程,并预测该滑雪场开业的第几天开始盈利.
参考公式:线性回归方程
的斜率和截距的最小二乘法估计分别为
.


天数代码![]() | 1 | 2 | 3 | 4 | 5 |
滑雪人数![]() | 9 | 11 | 14 | 26 | 20 |
经过测算,若一天中滑雪人数超过3500人时,当天滑雪场可实现盈利,请建立


参考公式:线性回归方程


您最近半年使用:0次
解题方法
4 . 每年的寒冷天气都会带热“御寒经济”,以交通为例,当天气天冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:
)与网上预约出租车订单数(单位:份);
(1)经数据分析,一天内平均气温
与该出租车公司网约订单数
(份)成线性相关关系,试建立
关于
的回归方程(系数保留两位小数),并预测日平均气温为
时,该出租车公司的网约订单数(结果保留整数);
(2)天气预报未来5天有2天日平均气温不高于
,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求至少有1天出租车网约订单数不低于250份的概率.
附:线性回归方程:

日平均气温![]() | 4 | 2 | ![]() | ![]() | ![]() |
网上预约订单数 | 135 | 150 | 200 | 215 | 250 |
(1)经数据分析,一天内平均气温





(2)天气预报未来5天有2天日平均气温不高于

附:线性回归方程:

您最近半年使用:0次
解题方法
5 . 5G技术对社会和国家十分重要,从战略地位来看,业界一般将其定义为继蒸汽机革命、电气革命和计算机革命后的第四次工业革命.某科技公司生产一种5G手机的核心部件,下表统计了该公司2017-2021年在该部件上的研发投入x(单位:千万元)与收益y(单位:亿元)的数据,结果如下:
(1)求研发投入x与收益y的相关系数r(精确到0.01);
(2)由表格可知y与x线性相关,试建立y关于x的线性回归方程,并估计当x为9千万元时,该公司生产这种5G手机的核心部件的收益为多少亿元;
(3)现从表格中的5组数据中随机抽取2组数据并结合公司的其他信息作进一步调研,记其中抽中研发投入超出4千万元的组数为X,求X的分布列及数学期望.
参考公式及数据:对于一组数据
(i=1,2,3,⋯,n),相关系数
,其回归直线
的斜率和截距的最小二乘估计分别为
,
,
.
年份 | 2017 | 2018 | 2019 | 2020 | 2021 |
研发投入x | 2 | 3 | 4 | 5 | 6 |
收益y | 2 | 3 | 3 | 3 | 4 |
(1)求研发投入x与收益y的相关系数r(精确到0.01);
(2)由表格可知y与x线性相关,试建立y关于x的线性回归方程,并估计当x为9千万元时,该公司生产这种5G手机的核心部件的收益为多少亿元;
(3)现从表格中的5组数据中随机抽取2组数据并结合公司的其他信息作进一步调研,记其中抽中研发投入超出4千万元的组数为X,求X的分布列及数学期望.
参考公式及数据:对于一组数据






您最近半年使用:0次
解题方法
6 . 某产品的广告费用支出
与销售额
之间有如下的对应数据:
(1)求回归直线方程;
(2)据此估计广告费用为10时销售收入
的值.
附:线性回归方程
中系数计算公式
,
,其中
,
表示样本均值.


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
(1)求回归直线方程;
(2)据此估计广告费用为10时销售收入

附:线性回归方程





您最近半年使用:0次
解题方法
7 . 某景区对2018年1-5月的游客量x与利润y的统计数据如表:
(1)根据所给统计数据,求y关于x的线性回归方程
;
(2)据估计6月份将有10万游客光临,请你判断景区上半年的总利润能否突破220万元?
(参考数据:
,
)
,
.
月份 | 1 | 2 | 3 | 4 | 5 |
游客量(万人) | 4 | 6 | 5 | 7 | 8 |
利润(万元) | 19 | 34 | 26 | 41 | 45 |
(1)根据所给统计数据,求y关于x的线性回归方程

(2)据估计6月份将有10万游客光临,请你判断景区上半年的总利润能否突破220万元?
(参考数据:




您最近半年使用:0次
8 . 下列说法正确的的有( )
A.已知一组数据![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
B.对具有线性相关关系的变量x,y,其线性回归方程为![]() ![]() ![]() |
C.已知随机变量X服从正态分布![]() ![]() ![]() |
D.已知随机变量X服从二项分布![]() ![]() ![]() |
您最近半年使用:0次
9 . 由
个小正方形构成长方形网格有
行和
列.每次将一个小球放到一个小正方形内,放满为止,记为一轮.每次放白球的频率为
,放红球的概率为q,
.
(1)若
,
,记
表示100轮放球实验中“每一列至少一个红球”的轮数,统计数据如表:
求y关于n的回归方程
,并预测
时,y的值;(精确到1)
(2)若
,
,
,
,记在每列都有白球的条件下,含红球的行数为随机变量
,求
的分布列和数学期望;
(3)求事件“不是每一列都至少一个红球”发生的概率,并证明:
.
附:经验回归方程系数:
,
,
,
.





(1)若



n | 1 | 2 | 3 | 4 | 5 |
y | 76 | 56 | 42 | 30 | 26 |
求y关于n的回归方程


(2)若






(3)求事件“不是每一列都至少一个红球”发生的概率,并证明:

附:经验回归方程系数:




您最近半年使用:0次
2023·全国·高二专题练习
解题方法
10 . 根据党的“扶贫同扶志、扶智相结合”精准扶贫、精准脱贫政策,中国儿童少年基金会为了丰富留守儿童的课余文化生活,培养良好的阅读习惯,在农村留守儿童聚居地区捐建“小候鸟爱心图书角”.2016年某村在寒假和暑假组织开展“小候鸟爱心图书角读书活动”,号召全村少年儿童积极读书,养成良好的阅读习惯,下表是对2016年以来近5年该村庄100位少年儿童的假期周人均读书时间的统计:
现要建立
关于
的回归方程,有两个不同回归模型可以选择,模型一:
;模型二:
,即使画出
关于
的散点图,也无法确定哪个模型拟合效果更好,现用最小二乘法原理,已经求得模型一的方程为
.
(1)请你用最小二乘法原理,结合下面的参考数据及参考公式求出模型二的方程(计算结果保留到小数点后一位);
(2)用计算残差平方和的方法比较哪个模型拟合效果更好,已经计算出模型一的残差平方和为
.
附:参考数据:
,其中
,
.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘法估计公式分别为
,
.
年份 | 2016 | 2017 | 2018 | 2019 | 2020 |
年份代码![]() | 1 | 2 | 3 | 4 | 5 |
每周人均读书时间![]() | 1.3 | 2.8 | 5.7 | 8.9 | 13.8 |
现要建立







(1)请你用最小二乘法原理,结合下面的参考数据及参考公式求出模型二的方程(计算结果保留到小数点后一位);
(2)用计算残差平方和的方法比较哪个模型拟合效果更好,已经计算出模型一的残差平方和为

附:参考数据:



参考公式:对于一组数据






您最近半年使用:0次