组卷网>知识点选题>最小二乘法求回归直线方程
解析
| 共计 2385 道试题
1 . 热心网友们调查统计了柳州市某网红景点在2022年6月至10月的旅游收入y(单位:万元),得到以下数据:

月份x

6

7

8

9

10

旅游收入y

10

12

11

12

20


(1)根据表中所给数据,用相关系数r加以判断,是否可用线性回归模型拟合yx的关系?若可以,求出y关于x之间的线性回归方程;若不可以,请说明理由;
(2)为调查游客对该景点的评价情况,网友们随机抽查了200名游客,得到如图列联表,请填写2×2列联表,并判断能否有99.9%的把握认为“游客是否喜欢该网红景点与性别有关联”?

喜欢

不喜欢

总计

100

60

总计

110


参考数据:
注:r的计算结果精确到0.001.参考公式:相关系数
线性回归方程:,其中

临界值表:

0.010

0.005

0.001

6.635

7.879

10.828


2023/02/03更新 | 12次组卷
2 . 某地区2015年至2021年居民家庭人均存款y(单位:万元)数据如下表:

年份

2015

2016

2017

2018

2019

2020

2021

年份代号x

1

2

3

4

5

6

7

人均存款y

1.4

1.8

2.1

2.9

3.3

3.7

4.4


变量xy具有线性相关关系.
(1)求y关于x的线性回归方程,并预测2022年该地区居民家庭人均存款;
(2)若由线性回归方程得到的估计数据与检测数据的误差为0,则称该数据为“完美数据”现从这些数据中随机抽取2个,设X为抽到的“完美数据”的个数,求X的分布列和数学期望.
参考公式:回归直线方程的斜率和截距的最小二乘法估计公式分别为:
2023/02/03更新 | 32次组卷
3 . 第24届冬奥会于2022年2月4日在北京市和张家口市联合举行,此项赛事大大激发了国人冰雪运动的热情.某滑雪场在冬奥会期间开业,下表统计了该滑雪场开业第天的滑雪人数(单位:百人)的数据.
天数代码12345
滑雪人数(百人)911142620

经过测算,若一天中滑雪人数超过3500人时,当天滑雪场可实现盈利,请建立关于的回归方程,并预测该滑雪场开业的第几天开始盈利.
参考公式:线性回归方程的斜率和截距的最小二乘法估计分别为.
4 . 每年的寒冷天气都会带热“御寒经济”,以交通为例,当天气天冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:)与网上预约出租车订单数(单位:份);
日平均气温42
网上预约订单数135150200215250

(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程(系数保留两位小数),并预测日平均气温为时,该出租车公司的网约订单数(结果保留整数);
(2)天气预报未来5天有2天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求至少有1天出租车网约订单数不低于250份的概率.
附:线性回归方程:
5 . 5G技术对社会和国家十分重要,从战略地位来看,业界一般将其定义为继蒸汽机革命、电气革命和计算机革命后的第四次工业革命.某科技公司生产一种5G手机的核心部件,下表统计了该公司2017-2021年在该部件上的研发投入x(单位:千万元)与收益y(单位:亿元)的数据,结果如下:

年份

2017

2018

2019

2020

2021

研发投入x

2

3

4

5

6

收益y

2

3

3

3

4


(1)求研发投入x与收益y的相关系数r(精确到0.01);
(2)由表格可知yx线性相关,试建立y关于x的线性回归方程,并估计当x为9千万元时,该公司生产这种5G手机的核心部件的收益为多少亿元;
(3)现从表格中的5组数据中随机抽取2组数据并结合公司的其他信息作进一步调研,记其中抽中研发投入超出4千万元的组数为X,求X的分布列及数学期望.
参考公式及数据:对于一组数据i=1,2,3,n),相关系数,其回归直线的斜率和截距的最小二乘估计分别为
6 . 某产品的广告费用支出与销售额之间有如下的对应数据:
24568
3040605070

(1)求回归直线方程;
(2)据此估计广告费用为10时销售收入的值.
附:线性回归方程中系数计算公式,其中表示样本均值.
7 . 某景区对2018年1-5月的游客量x与利润y的统计数据如表:

月份

1

2

3

4

5

游客量(万人)

4

6

5

7

8

利润(万元)

19

34

26

41

45


(1)根据所给统计数据,求y关于x的线性回归方程
(2)据估计6月份将有10万游客光临,请你判断景区上半年的总利润能否突破220万元?
(参考数据:
8 . 下列说法正确的的有(       
A.已知一组数据的方差为3,则的方差也为3
B.对具有线性相关关系的变量xy,其线性回归方程为,若样本点的中心为,则实数m的值是
C.已知随机变量X服从正态分布,若,则
D.已知随机变量X服从二项分布,若,则
9 . 由个小正方形构成长方形网格有行和列.每次将一个小球放到一个小正方形内,放满为止,记为一轮.每次放白球的频率为,放红球的概率为q.
(1)若,记表示100轮放球实验中“每一列至少一个红球”的轮数,统计数据如表:
n12345
y7656423026

y关于n的回归方程,并预测时,y的值;(精确到1)
(2)若,记在每列都有白球的条件下,含红球的行数为随机变量,求的分布列和数学期望;
(3)求事件“不是每一列都至少一个红球”发生的概率,并证明:.
附:经验回归方程系数:.
2023·全国·高二专题练习
10 . 根据党的“扶贫同扶志、扶智相结合”精准扶贫、精准脱贫政策,中国儿童少年基金会为了丰富留守儿童的课余文化生活,培养良好的阅读习惯,在农村留守儿童聚居地区捐建“小候鸟爱心图书角”.2016年某村在寒假和暑假组织开展“小候鸟爱心图书角读书活动”,号召全村少年儿童积极读书,养成良好的阅读习惯,下表是对2016年以来近5年该村庄100位少年儿童的假期周人均读书时间的统计:
年份20162017201820192020
年份代码12345
每周人均读书时间(小时)1.32.85.78.913.8

现要建立关于的回归方程,有两个不同回归模型可以选择,模型一:;模型二:,即使画出关于的散点图,也无法确定哪个模型拟合效果更好,现用最小二乘法原理,已经求得模型一的方程为.
(1)请你用最小二乘法原理,结合下面的参考数据及参考公式求出模型二的方程(计算结果保留到小数点后一位);
(2)用计算残差平方和的方法比较哪个模型拟合效果更好,已经计算出模型一的残差平方和为.
附:参考数据:,其中.
参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘法估计公式分别为.
2023/01/31更新 | 58次组卷
共计 平均难度:一般