组卷网>知识点选题>计算卡方进行独立性检验
知识点
解析
| 共计 3155 道试题
1 . 已知某中学共有学生人,男女比例为,该中学体育协会为了解乒乓球运动和性别的关联性,通过调查统计,得到了如下数据:

男生

女生

合计

喜欢打乒乓球

不喜欢到乒乓球

合计


(1)以频率估计概率,请估计该校女生喜欢打乒乓球的人数;
(2)能否在犯错误的概率不超过的前提下认为“该中学的学生喜欢打乒乓球与性别有关”?
附:,其中.


2 . 为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对学生体育锻炼的经常性有影响,为此随机抽查了男女生各100名,得到如下数据:
性别锻炼
不经常经常
女生4060
男生2080

(1)依据的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;
(2)从这200人中随机选择1人,已知选到的学生经常参加体育锻炼,求他是男生的概率;
(3)为了提高学生体育锻炼的积极性,集团设置了“学习女排精神,塑造健康体魄”的主题活动,在该活动的某次排球训练课上,甲乙丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求第次传球后球在甲手中的概率.
附:
0.0100.0050.001
6.6357.87910.828

3 . 某足球俱乐部在对球员的使用上总是进行数据分析,在2022年度赛季中,为了考查甲球员对球队的贡献度,现作如下数据统计:

球队胜

球队负

总计

甲参加

8

30

甲未参加

8

总计

20


(1)求r,s的值,据此能否有95%的把握认为球队胜利与甲球员参赛有关;.
(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.3、0.5、0.1、0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.4、0.2、0.6、0.2.则:
①当他参加比赛时,求球队某场比赛输球的概率;
②当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;
③如果你是教练员,应用概率统计有关知识,该如何合理安排乙球员的参赛位置?
附表及公式:

P(K²≥k)

0.15

0.10

0.05

0.010

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

4 . 某政策研究机构对国家新冠防疫措施新版《二十条》进行民意测评,在某低风险地区,通过分层抽样电话咨询了年龄在15~75的200个居民,调查对象在“支持”与“持保留意见”中二选一,这200个样本的年龄频率分布直方图如下:

(1)求这200个样本的年龄中位数;
(2)把年龄在15~55的看作青年,在55~75的看作中老年,已知这200人中中老年持保留意见的有20人,而所有持保留意见的占15%.
(i)完成以下列联表;
(ii)能否有99.9%的把握认为年龄与观点有关.

中老年

青年

合计

支持

持保留意见

合计

200


0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828


5 . 近年来中国咖啡文化盛行,咖啡作为一种船来品,在国内成了一种时尚,越来越多的企业开始扎堆咖啡赛道,今年以来先有中国邮政首家邮政咖啡在厦门落地,再有李宁跨界推出“宁咖啡”.
(1)A传媒公司拟从家老咖啡企业和家今年新注册的咖啡企业中随机选家进行访谈,记选到的今年新注册的咖啡企业数为,求的分布列与数学期望
(2)为了解一、二线城市青年群体与三、四线城市青年群体消费咖啡情况,A传媒公司通过本公司媒体进行调查,在参与调查的一、二线城市青年群体与三、四线城市青年群体中各取人,得到如下列联表的部分数据.

一、二线城市青年

三、四线城市青年

合计

是咖啡消费者

不是咖啡消费者

合计


列联表补充完整,并判断是否有的把握认为一、二线城市青年与三、四线城市青年消费咖啡的意愿有差别
附:.


更新:2022/12/07组卷:23
解答题 | 较易(0.85) | 2022·全国·模拟预测
6 . 2022年7月20日下午“闵行少年星,科技强国梦”第十七届闵行区青少年科技节开幕式暨“闵行少年星”计划亮星发布会在上海市闵行区举行.本次活动采用线上和线下两种方式同步进行,闵行区各中小学建议学生在家长陪同的情况下线上同步收看.活动结束后某校从高一年级的学生中随机抽取100名学生(其中男生60名)了解他们当天收看时长的情况,统计如下表:

收看时长低于30分钟

收看时长不低于30分钟

总计

男生

30

女生

10

合计

100


(1)根据统计数据完成以上列联表,并根据小概率值的独立性检验,分析该校女生和男生在当天收看时长方面是否存在差异?
(2)若从抽取的100名学生中按当天收看时长是否低于30分钟采用分层抽样的方法抽取10名学生进行航天知识线上测试,再从这10名学生中随机抽取3名学生,记这3名学生当天收看时不低于30分钟的人数为,求的分布列和数学期望.
参考公式及数据:,其中.

0.1

0.05

0.01

0.001

2.706

3.841

6.635

10.828


更新:2022/12/07组卷:49
解答题 | 一般(0.65) | 2022·全国·模拟预测
7 . 某校课题组选取高一两个班级开展对“数学问题链深度设计”的研究,其中A班为常规教学班,B班为课改研究班.在一次期末考试后,对AB两班学生的数学成绩(单位:分)进行分析,满分150分,规定:小于120分为不优秀,大于或等于120分为优秀.已知AB两班学生的数学成绩的频数分布统计表如下:
A班:
分组100分以下
频数481012124

B班:
分组100分以下
频数612141062

(1)由以上统计数据填写下面的2×2列联表,并根据小概率值的独立性检验,能否计数成绩是否优秀与课改研究有关?
AB总计
优秀
不优秀
总计

(2)从AB两班里成绩在100分以下的学生中任意选取2人,记X为2人中B班的人数,求X的分布列及数学期望.
附:
α0.10.050.0250.01
2.7063.8415.0246.635

更新:2022/12/07组卷:31
8 . 某校为了加强体能训练,利用每天15点至16点进行大课间活动.为了了解学生适应情况,他们采用给活动打分的方式(分数为整数,满分100分).从中随机抽取一个容量为120的样本,发现所得数据均在内,现将这些数据分成6组并绘制出如图所示的样本频率分布直方图.

(1)请将样本频率分布直方图补充完整,并求出样本的平均数(同一组中的数据用该组区间的中点值代表);
(2)在该样本中,经统计有男同学70人,其中40人得分在中,女同学50人,其中20人得分在中,根据所给数据,完成下面的列联表,并判断是否有90%的把握认为“对大课间活动的适应性与性别有关”(分数在内认为适应大课间活动).

适应

不适应

合计

男同学

女同学

合计


附:

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828


9 . 年四川持续出现高温天气,导致电力供应紧张.某市电力局在保证居民生活用电的前提下,尽量合理利用资源,保障企业生产.为了解电力资源分配情况,在8月初,分别对该市A区和区各10个企业7月的供电量与需求量的比值进行统计,结果用茎叶图表示如图.
不受影响受影响合计
A
B
合计

(1)求区企业7月的供电量与需求量的比值的中位数;B区7月的供电量与需求量的比值的平均数;
(2)当供电量与需求量的比值小于时,生产要受到影响,统计茎叶图中的数据,填写2×2列联表,并根据列联表,判断是否有95%的把握认为生产受到影响与企业所在区有关?
附:
临界值表:

10 . 第24届冬季奥林匹克运动会于2022年2月4日在北京开幕.吉祥物“冰墩墩”以其可爱的外形迅速火爆出圈,其周边产品更是销售火热,甚至达到“一墩难求”的现象.某购物网站为了解人们购买“冰墩墩”的意愿,随机对90个用户(其中男30人,女60人)进行问卷调查,得到如下列联表和条形图,如果从这90人中任意抽取1人,抽到“有购买意愿”的概率为.问:
有购买意愿没有购买意愿合计
合计


(1)完成上述列联表,并回答是否有的把握认为“购买意愿”与“性别”有关?
(2)若以这90个用户的样本的概率估计总体的概率,现再从该购物网站所有用户中,采用随机抽样的方法每次抽取1名用户,抽取4次,记被抽取的4名用户对“冰墩墩”有购买意愿的人数为X,若每次抽取的结果是相互独立的,求X期望和方差.
参考公式:,其中.
临界值表:
0.100.050.0100.0050.001
2.7063.8416.6357.87910.828