组卷网>知识点选题>计算卡方进行独立性检验
显示知识点
显示答案
| 共计 2275 道试题
1 . 晨跑是指在早晨以跑步为主的进行身体锻炼的一种运动方式,某机构随机抽取了某社区200名运动爱好者进行问卷调查,其中男、女生的人数化为3:2,得到如下的2×2列联表.
喜欢晨跑不喜欢晨跑合计
男生40
女生50
合计

(1)完成表中数据并判断是否有90%的把握认为喜欢晨跑与性别有关?
(2)若从这200名运动爱好者中任意选取了5人,其中女生3人.再从这5人中随机抽取2人做进一步调查,求这2人中男生与女生都有的概率.
参考公式: ,其中
参考数据:
0.100.050.0100.001
2.7063.8416.63510.828

2 . 立德中学为了迎接“冬奥会”,号召全校教职工参与“微信运动”活动.该校的200名教职工都参与了“微信运动”活动,且每月进行一次评比,对该月每日运动都达到10000步及以上的教职工授予该月“冰墩墩达人”称号,其余教职工均称为“参与者”.下表是该校200名教职工2021年7月到11月获得“冰墩墩达人”称号的统计数据:

实际月份(月)

7

8

9

10

11

月份编号x

1

2

3

4

5

“冰墩墩达人”教职工数y(人)

135

145

150

155

165


(1)由表中看,可用线性回归模型拟合“冰墩墩达人”教职工数y与月份编号x之间的关系式.求y关于x的回归直线方程,并预测该校12月份获得“冰墩墩达人”称号的教职工数;
(2)为了进一步了解教职工的运动情况,选取9月份的运动数据进行分析,统计结果如下:

冰墩墩达人

参与者

总计

男职工

70

b

80

女职工

c

40

120

总计

150

50

200


请补充表中的数据(直接写出bc的值)并根据表中数据判断是否有99.9%的把握认为获得“冰墩墩达人”称号与性别有关?
参考公式及数据:
,其中

0.05

0.010

0.005

0.001

3.841

6.635

7.879

10.828


单选题 | 较易(0.85) | 2022·江西·二模(文)
3 . 千百年来,我国劳动人民在生产实践中根据云的形状、走向速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩销云,地上雨淋林”“日落云里走,雨在半夜后”……小明同学为了验证“日落云里走,雨在半夜后”,观察了所在地区A的100天日落和夜晚天气,得到如下列联表:

夜晚天气


日落云里走

下雨

不下雨

出现

25

5

不出现

25

45

临界值表

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828


并计算得到,下列小明对地区天气判断正确的是(       
A.夜晚下雨的概率约为
B.未出现“日落云里走”,但夜晚下雨的概率约为
C.出现“日落云里走”,有99.9%的把握认为夜晚会下雨
D.有99.9%的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关
解答题 | 一般(0.65) | 2022·吉林一中高二期中
4 . 某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:A类(不参加课外阅读),B类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表:

A

B

C

男生

x

5

3

女生

y

3

3


(1)求出表中xy的值;
(2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加阅读与否”与性别有关;

男生

女生

总计

不参加课外阅读

参加课外阅读

总计


(3)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类人数和C类人数差的绝对值,求X的分布列与均值.
附:
附表:

a

0.10

0.005

0.01

2.706

3.841

6.635


5 . 第24届冬季奥运会将于2022年2月4日在北京开幕,本届冬奥会共设7个大项(滑雪、滑冰、冰球、冰壶、雪车、雪橇、冬季两项)、15个分项(高山滑雪、自由式滑雪、单板滑雪、跳台滑雪、越野滑雪、北欧两项、短道速滑、速度滑冰、花样滑冰、冰球、冰壶、雪车、钢架雪车、雪橇、冬季两项)共计109个小项,为调查学生对冬季奥运会项目的了解情况,某大学进行了一次抽样调查,若被调查的男女生人数均为,统计得到以下列联表,经过计算可得

男生

女生

合计

了解

不了解

合计


(1)求n的值,并判断有多大的把握认为该校学生对冬季奥运会项目的了解情况与性别有关;
(2)为弄清学生不了解冬季奥运会项目的原因,采用分层抽样的方法从抽取的不了解冬季奥运会项目的学生中随机抽取9人,再从这9人中抽取3人进行面对面交流,用X表示3人中女生的人数,求X的分布列及数学期望.附表:

0.10

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828


附:
6 . 针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有99%的把握认为是否喜欢抖音和性别有关,则男生的人数可能有(       
A.12人B.18人C.24人D.30人
7 . 为培养学生的创新精神和实践能力,某中学计划在高一年级开设人工智能课程.为了解学生对人工智能的兴趣,随机从该校高一年级学生中抽取了100人进行调查,其中部分数据如下表.
有兴趣没兴趣合计
男生10
女生30
合计25

(1)根据所给数据完成上述表格,并判断是否有90%的把握认为对人工智能有兴趣与性别有关;
(2)从参加调查的25个对人工智能没兴趣的同学中随机抽取2人,记2人中男生的人数为X,求X的分布列和数学期望.
附:nabcd.
0.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

解答题 | 较易(0.85) | 2022·江西·模拟预测(文)
8 . 在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:
潜伏期(单位:天)
人数100200300250130155

(1)现在用分层抽样的方法在第二,三组共选取5人参加传染病知识学习,若从参加学习的5人中随机选取2人参加考试,求恰有一人来自第二组的概率;
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关.
潜伏期≤6天潜伏期>6天总计
50岁以上(含50岁)100
50岁以下55
总计200

附:
0.050.0250.0010
3.8415.0246.635

,其中.
9 . 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别抽查了两台机床生产的产品,产品的质量情况统计如下表:
一级品二级品合计
甲机床30
乙机床40
合计90200
0.100.050.0100.0050.001
2.7063.8416.6357.87910.828

(1)请将上述列联表补充完整;
(2)能否有的把握认为甲机床的产品质量与乙机床的产品质量有差异?
附:,其中
10 . 我市连续两年举行了全民健身中短跑赛,为此某机构对人们参加中短跑运动的情况进行了统计调查,从参与运动的人中随机抽取200人,对其每周参与中短跑训练的天数进行统计,得到以下统计表:
平均每周进行中短跑训练天数(单位:天)
人数3013040

若某人平均每周进行中短跑训练天数不少于5,则称其为“热烈参与者”,否则称为“非热烈参与者”.
(1)经调查,该市约有2万人参与中短跑运动,试估计其中“热烈参与者”的人数;
(2)根据上表的数据,填写下面的列联表,并通过计算判断能否在犯错的概率不超过0.05的前提下认为“热烈参与者”与性别有关?
热烈参与者非热烈参与者总计
150
45
总计200

附公式:n为样本容量)
0.5000.4000.2500.1500.1000.0500.0250.0100.0050.001
0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828