组卷网>知识点选题>离散型随机变量及其分布列、均值与方差
显示知识点
显示答案
| 共计 4088 道试题
解答题 | 一般(0.65) |
1 . 一个袋子中有8个大小相同颜色不同的小球,其中4个红球,3个白球,1个黄球,从袋中任意取出3个小球.
(1)求其中恰有2个小球颜色相同的概率;
(2)设随机变量X为取出的3个小球中红球的个数,求X的均值和方差.
更新:2022/06/25组卷:6
2 . 为拓展海外市场,某电子公司新开发一款电子产品,该电子产品的一个系统有3个电子元件组成,各个电子元件能正常工作的概率为,且每个电子元件能否正常工作相互独立,若系统中有超过一半的电子元件正常工作,则可以正常工作,否则就需要维修,且维修所需费用为900元.
(1)求系统需要维修的概率;
(2)该电子产品共由3个系统组成,设为电子产品所需要维修的费用,求的分布列和数学期望.
3 . 冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,让学生了解更多的冬奥会知识,某学校举办了有关2022年北京冬奥会知识的宣传活动,其中有一项为抽卡答题活动,盒中装有9张大小相同的精美卡片,卡片上分别印有北京冬奥会的吉祥物“冰墩墩”和“雪容融”.卡片背面都有关于冬奥会的问题,答对则奖励与卡片对应的吉祥物玩偶.其中“冰墩墩”卡片有5张,编号分别为1,2,3,4,5;“雪容融”卡片有4张,编号分别为1,2,3,4,从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).


(1)求取出的4张卡片中,含有编号为4的卡片的概率;
(2)在取出的4张卡片中,“冰墩墩”卡片的个数设为X.求随机变量X的分布列.
4 . 下列结论正确的有(       
A.若随机变量满足,则
B.若随机变量,且,则
C.若样本数据线性相关,则用最小二乘估计得到的经验回归直线经过该组数据的中心点
D.决定系数越大,意味着残差平方和越小,即模型的拟合效果越好.
5 . 若随机变量服从两点分布,其中,则下列结论正确的是(     
A.B.
C.D.
更新:2022/06/24组卷:187引用[21]
6 . “民族要复兴,乡村必振兴”,为了加强乡村振兴宣传工作,让更多的人关注乡村发展,某校举办了有关城乡融合发展、人与自然和谐共生的知识竞赛.比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行,每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.
(1)求选手甲被淘汰的概率;
(2)设选手甲在初赛中答题的个数为X,试求X的分布列和数学期望.
8 . 若数据的方差为2,则数据a为实数)的方差是(       
A.6+aB.8C.4+aD.12
9 . 下列说法错误的是(       
A.方差描述了一组数据围绕平均数波动的大小,方差越大,数据的离散程度越大,方差越小,数据的离散程度越小
B.用相关指数来刻画回归效果,越小说明拟合效果越好
C.某人每次投篮的命中率为,现投篮5次,设投中次数为随机变量,则
D.对于独立性检验,随机变量的观测值k值越小,判定“两分类变量有关系”犯错误的概率越大
10 . 习近平总书记曾提出,“没有全民健康,就没有全面小康”.为响应总书记的号召,某社区开展了“健康身体,从我做起”社区健身活动,运动分为徒手运动和器械运动两大类.该社区对参与活动的1200人进行了调查,其中男性650人,女性550人;所得统计数据如下表所示:(单位:人)
分类
性别
器械类徒手类合计
男性590
女性240
合计900

(1)请将题中表格补充完整,并判断能否有把握认为“是否选择器械类与性别有关”?
(2)为了检验活动效果,该社区组织了一次徒手类的竞赛项目,对社区中参与徒手类项目的人群采取分层抽样的方法抽取5人参与竞赛,其中男生通过徒手类竞赛的概率为,女生通过的概率为,且男女生是否通过相互独立,用表示通过徒手类竞赛项目的人数,求随机变量的分布列和数学期望.
(参考数据:
附:的计算公式:,其中
0.0500.0250.0100.005
3.8415.0246.6357.879