组卷网>知识点选题>二项分布与正态分布
解析
| 共计 4717 道试题
1 . 已知随机变量,且,则______.
2 . 设随机变量服从正态分布,若,则__________
3 . 假设有两个密闭的盒子,第一个盒子里装有3个白球2个红球,第二个盒子里装有2个白球4个红球,这些小球除颜色外完全相同.
(1)每次从第一个盒子里随机取出一个球,取出的球不再放回,经过两次取球,求取出的两球中有红球的条件下,第二次取出的是红球的概率;
(2)若先从第一个盒子里随机取出一个球放入第二个盒子中,摇匀后,再从第二个盒子里随机取出一个球,求从第二个盒子里取出的球是红球的概率.
2023/02/03更新 | 4次组卷
4 . 为了调查高中生的数学成绩与学生每周自主学习时间之间的关联,某中学数学教师对新入学的180名学生进行了跟踪调查,其中每周自主学习的时间不少于12小时的有76人,某次考试后,统计成绩,得到如下的2×2列联表:
(单位:人)

每周自主学习时间

数学成绩

合计

不低于120分

低于120分

不少于12小时

60

76

不足12小时

64

合计

180


(1)请完成上面的2×2列联表,根据小概率值的独立性检验,能否认为高中生的数学成绩与每周自主学习时间有关联?
(2)(ⅰ)若将频率视为概率,从全校本次考试中数学成绩不低于120分的学生中随机抽取12人,求这些人中每周自主学习时间不少于12小时的人数的数学期望.
(ⅱ)从全校本次考试中数学成绩不低于120分的学生中随机抽取12人,通过调查问卷发现,这12人每周自主学习时间的情况可分为三类:A类,每周自主学习时间不少于16小时,有4人;B类,每周自主学习时间不少于12小时但不足16小时,有5人;C类,每周自主学习时间不足12小时,有3人.若从这12人中再随机抽取3人进一步了解情况,记X为抽取的3人中A类人数和C类人数差的绝对值,求X的数学期望.
附:

0.100

0.050

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828


5 . 近年来,我国加速推行垃圾分类制度,全国垃圾分类工作取得积极进展.某城市推出了两套方案,并分别在AB两个大型居民小区内试行.方案一:进行广泛的宣传活动,通过设立宣传点、发放宣传单等方式,向小区居民和社会各界宣传垃圾分类的意义,讲解分类垃圾桶的使用方式,垃圾投放时间等,定期召开垃圾分类会议和知识宣传教育活动;方案二:智能化垃圾分类,在小区内分别设立分类垃圾桶,垃圾回收前端分类智能化,智能垃圾桶操作简单,居民可以通过设备进行自动登录、自动称重、自动积分等一系列操作.建立垃圾分类激励机制,比如,垃圾分类换积分,积分可兑换礼品等,激发了居民参与垃圾分类的热情,带动居民积极主动地参与垃圾分类.经过一段时间试行之后,在这两个小区内各随机抽取了100名居民进行问卷调查,记录他们对试行方案的满意度得分(满分100分),将数据分成6组:并整理得到如下频率分布直方图:

(1)请通过频率分布直方图分别估计两种方案满意度的平均得分,判断哪种方案的垃圾分类推广措施更受居民欢迎(同一组中的数据用该组中间的中点值作代表);
(2)估计A小区满意度得分的第80百分位数;
(3)以样本频率估计概率,若满意度得分不低于70分说明居民赞成推行此方案,低于70分说明居民不太赞成推行此方案.现从B小区内随机抽取5个人,用X表示赞成该小区推行方案的人数,求X的分布列及数学期望.
6 . 北京2022年冬奥会的吉祥物冰墩墩和雪容融非常可爱,某教师用吉祥物的小挂件作为奖品鼓励学生学习,设计奖励方案如下:在不透明的盒子中放有大小、形状完全相同的6张卡片,上面分别标有编号1,2,3,4,5,6,现从中不放回地抽取两次卡片,每次抽取一张,只要抽到的卡片编号大于4就可以中奖,已知第一次抽到卡片中奖,则第二次抽到卡片中奖的概率为(       
A.B.C.D.
7 . 某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费.为此,政府调查了100户居民的月平均用电量(单位:度),以分组的频率分布直方图如图所示.

(1)根据频率分布直方图的数据,求出x的值并估计该市每户居民月平均用电量的值;
(2)现从该市所有居民中随机抽取3户,其中月平均用电量介于的户数为,用频率估计概率,求的分布列及数学期望.
单选题 | 适中 (0.65) |
8 . 已知小郭、小张和小陆三名同学同时独立地解答一道概率试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,小陆同学解答不正确的概率是(       
A.B.C.D.
2023/02/03更新 | 36次组卷
9 . 2022年某省社科院发布了本年度“城市居民幸福指数排行榜”,某市成为了本年度城市居民最“幸福城”,随后,某机构组织人员进行社会调查,用“10分制”随机调查“明月”社区人们的幸福指数.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数(以小数点前的一位数字为茎,小数点后的一位数字为叶).若幸福指数不低于9.0分,则称该人的幸福度为“超级幸福”.

(1)指出这组数据的众数和中位数;
(2)求从这16人中随机选取3人,至少有2人是“超级幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选4人,记表示抽到“超级幸福”的人数,求的分布列及数学期望.
10 . 甲袋中有5个红球,2个白球和3个黑球,乙袋中有4个红球,3个白球和3个黑球.先从甲袋中随机取出一球放入乙袋,分别以表示由甲袋取出的球是红球,白球,黑球的事件;再从乙袋中随机取出一球,以B表示由乙袋取出的球是红球的事件,则下列结论中正确的是(       
A.B.
C.D.
共计 平均难度:一般