组卷网>知识点选题>利用二项分布概率公式求二项分布的分布列
显示知识点
显示答案
| 共计 424 道试题
1 . 某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按,…,分组,制成频率分布直方图:

假设乘客乘车等待时间相互独立.
(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为;从乙站的乘客中随机抽取1人,记为.用频率估计概率,求乘客乘车等待时间都小于20分钟的概率;
(2)在上班高峰时段,从甲站乘车的乘客中随机抽取3人,表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量的分布列与数学期望.
2 . 电子科技公司研制无人机,每架无人机组装后每周要进行次试飞试验,共进行次.每次试飞后,科研人员要检验其有否不良表现.若在这次试飞中,有不良表现不超过次,则该架无人机得分,否则得分.假设每架无人机次检验中,每次是否有不良表现相互独立,且每次有不良表现的概率均为.
(1)求某架无人机在次试飞后有不良表现的次数的分布列和方差;
(2)若参与试验的该型无人机有架,在次试飞试验中获得的总分不低于分,即可认为该型无人机通过安全认证.现有架无人机参与试飞试验,求该型无人机通过安全认证的概率是多少?
解答题 | 一般(0.65) | 2022·全国·高三专题练习
3 . 很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.

(1)求这12名新手的平均成绩与方差;
(2)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4名参加座谈会,用X表示成绩合格的人数,求X的分布列与数学期望.
解答题 | 一般(0.65) | 2022·全国·高三专题练习
4 . 影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图.

(1)写出这组数据的众数和中位数.
(2)若视力测试结果不低于5.0,则称为“好视力”.
①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;
②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记表示抽到“好视力”学生的人数,求的分布列.
5 . 甲、乙二人进行定点投篮比赛,已知甲、乙二人每次投进的概率均为,两人各投1次称为一轮投篮.
(1)求乙在前3次投篮中,恰好投进2个球的概率;
(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量,求的分布列与期望.
解答题 | 一般(0.65) | 2022·全国·高三专题练习
6 . 2020年是比较特殊的一年,延期一个月进行的高考在万众瞩目下顺利举行并安全结束.在备考期间,某教育考试研究机构举办了多次的跨地域性的联考,在最后一次大型联考结束后,经统计分析发现,学生的模拟测试成绩服从正态分布(满分为750分).已知.现在从参加联考的学生名单库中,随机抽取4名学生.
(1)求抽到的4名学生中,恰好有2名学生的成绩落在区间内,2名学生的成绩落在区间内的概率;
(2)用表示抽取的4名同学的成绩落在区间内的人数,求的分布列和数学期望.
7 . 小和小两个同学进行摸球游戏,甲、乙两个盒子中各装有6个大小和质地相同的球,其中甲盒子中有1个红球,2个黄球,3个蓝球,乙盒子中红球、黄球、蓝球均为2个,小同学在甲盒子中取球,小同学在乙盒子中取球.
(1)若两个同学各取一个球,求取出的两个球颜色不相同的概率;
(2)若两个同学第一次各取一个球,对比颜色后分别放入原来的盒子;第二次再各取一个球,对比颜色后再分别放入原来的盒子,这样重复取球三次.记球颜色相同的次数为随机变量,求的分布列和数学期望
8 . 某行业对本行业人员的身高有特殊要求,该行业人员的身高(单位:)服从正态分布.已知.
(1)从该行业中随机抽取一人,求此人身高在区间的概率;
(2)从该行业人员中随机抽取3人,设这3人中身高在区间上的人数为,求的分布列和数学期望(分布列结果可以只列式不计算).
解答题 | 较易(0.85) | 2021·全国·高二课时练习
9 . 已知,且,求Y的分布列.
更新:2021/11/05组卷:51
解答题 | 较易(0.85) | 2021·全国·高二课时练习
10 . 张明从家坐公交车到学校的途中,会通过3个有红绿灯的十字路口,假设在每个十字路口遇到红灯的概率均为0.25,而且在各路口是否遇到红灯是相互独立的.设 为张明在途中遇到的红灯数,求随机变量X的分布列.
更新:2021/11/05组卷:51