组卷网>知识点选题>利用二项分布概率公式求二项分布的分布列
显示知识点
显示答案
| 共计 592 道试题
1 . 受全球新冠疫情影响,出国留学学生人数较往年急剧缩减,某出国留学教学机构随机对全省各地的100名高二学生进行电话调查,询问学生出国留学的意向,结果统计如下表所示:
组别无意向有意向
437
473

利用这些数据,将频率视为概率,试推测若以全省高二学生为研究范围,从有意向的人中随机抽取3人,既有男生又有女生的概率是______.
2 . 美国白蛾,又叫秋幕毛虫,网幕毛虫,原产北美洲,广泛分布于美国和加拿大南部,1979年由朝鲜传入我国辽宁省丹东市年,美国白蛾跨过淮河,向长江以南扩散趋势明显,现已传播至我国华北地区部分省市,并仍然呈扩散蔓延的趋势,严重危害果树、林木、农作物及野生植物等300多种植物……经调查研究发现,每只白蛾的平均产卵数y和平均温度x有关.为防治灾害,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.
均温度x21232527293235
平均产卵数y/个711212466115325




(1)根据散点图判断,(其中…为自然对数的底数哪一个更适宜作为平均产卵数y关于平均温度x的经验回归模型给出判断即可,不必说明理由
(2)求出y关于x的经验回归方程结果精确到小数点后第三位
(3)根据以往统计,该地每年平均温度达到以上时白蛾会对果树、林木、农作物等造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到以上的概率为
①记该地今后年恰好需要2次人工防治的概率为,求取得最大值时对应的概率
②根据①中的结论,当取最大值时,记该地今后8年需要人工防治的次数为X,求X的均值和方差.
附:对于一组数据,…,,其经验回归方程的斜率和截距的最小二乘估计分别为
3 . 红外测温仪方便、快捷,已经逐渐代替水银体温计应用于日常体温测量.调查发现,使用水银体温计测温结果与人体的真实体温基本一致,而使用红外测温仪测量体温可能会产生误差.对同一人而言,如果用红外测温仪与水银体温计测温结果相同,我们认为红外测温仪“测温准确”:否则,我们认为红外测温仪“测温失误”.现在我校随机抽取校内师生20人用红外测温仪与水银体温计分别测量体温,数据如下:
序号红外测温仪(℃)水银体温计(℃)序号红外测温仪(℃)水银体温计(℃)
0136.636.61135.636.5
0236.536.71236.536.5
0336.336.21336.736.7
0435.435.41436.236.2
0536.536.41536.436.4
0636.236.21636.336.4
0736.536.51735.336.4
0835.235.31835.635.6
0937.237.01936.836.8
1036.636.62036.736.7

(1)试估计用红外测温仪测量我校1人,“测温准确”的概率;
(2)将上述样本统计中的频率视为概率,从我校中任意抽查3名师生用红外测温仪测量体温,设随机变量X为使用红外测温仪“测量准确”的人数,求X的分布列与数学期望;
(3)医学上通常认为,人的体温在不低于37.3°C且不高于38°C时处于“低热”状态,我校某一天用红外测温仪测温的结果显示,有3名师生的体温都是37.3°C,能否由表中的数据来认定这3名师生中至少有一人处于“低热”状态?说明理由.
4 . 足球比赛淘汰赛阶段常规比赛时间为90分钟,若在90分钟结束时进球数持平,需进行30分钟的加时赛,若加时赛仍是平局,则采用“点球大战”的方式决定胜负.“点球大战”的规则如下:①两队各派5名队员,双方轮流踢点球,累计进球个数多者胜;②如果在踢满5轮前,一队的进球数已多于另一队踢满5轮最多可能射中的球数,则不需要再踢(例如:第4轮结束时,双方“点球大战”的进球数比为2:0,则不需要再踢第5轮了);③若前5轮“点球大战”中双方进球数持平,则从第6轮起,双方每轮各派1人罚点球,若均进球或均不进球,则继续下一轮,直到出现一方进球另一方不进球的情况,进球方胜出.
(1)假设踢点球的球员等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也只有的可能性将球扑出,若球员射门均在门内,在一次“点球大战”中,求门将在前三次扑出点球的个数的分布列和期望:
(2)现有甲、乙两队在半决赛中相遇,常规赛和加时赛后双方战平,需进行“点球大战”来决定胜负,设甲队每名队员射进点球的概率均为,乙队每名队员射进点球的概率均为,假设每轮点球中进球与否互不影响,各轮结果也互不影响.
(i)若甲队先踢点球,求在第3轮结束时,甲队踢进了3个球(不含常规赛和加时赛进球)并胜出的概率;
(ii)求“点球大战”在第6轮结束,且乙队以5:4(不含常规赛和加时赛得分)胜出的概率.
5 . 我国承诺2030年前达到“碳达峰”,2060年实现“碳中和”.“碳达峰”就是我们国家承诺在2030前,二氧化碳的排放不再增长,达到峰值之后再慢慢减下去;而到2060年,针对排放的二氧化碳要采取植树、节能减排等各种方式全部抵消掉,这就是“碳中和”.做好垃圾分类和回收工作可以有效地减少处理废物造成的二氧化碳的排放,助力“碳中和”.某校为加强学生对垃圾分类意义的认识以及养成良好的垃圾分类的习惯,团委组织了垃圾分类知识竞赛活动,竞赛分为初赛、复赛和决赛,只有通过初赛和复赛,才能进入决赛.甲、乙、丙三队参加竞赛,已知甲、乙两队通过初赛和复赛获胜的概率均为;丙队通过初赛和复赛的概率分别为p,其中,三支队伍是否通过初赛和复赛互不影响.
(1)求P取何值时,丙队进入决赛的概率最大:.
(2)在(1)的条件下,求进入决赛的队伍数X的分布列和数学期望;
(3)求进入决赛的队伍数X的数学期望的最大值及此时p的值.
6 . 冬季两项是第24届北京冬奥会的比赛项目之一,它把越野滑雪和射击两种特点不同的竞赛项目结合在一起.其中20男子个人赛的规则如下:
①共滑行5圈(每圈4),前4圈每滑行1圈射击一次,每次5发子弹,第5圈滑行直达终点;
②如果选手有n发子弹未命中目标,将被罚时n分钟;
③最终用时为滑雪用时、射击用时和被罚时间之和,最终用时少者获胜.
已知甲、乙两人参加比赛,甲滑雪每圈比乙慢36秒,甲、乙两人每发子弹命中目标的概率分别为.假设甲、乙两人的射击用时相同,且每发子弹是否命中目标互不影响.
(1)若在前三次射击中,甲、乙两人的被罚时间相同,求最终甲胜乙的概率;
(2)若仅从最终用时考虑,甲、乙两位选手哪个水平更高?说明理由.
7 . 在新型冠状病毒疫情期间,某高中学校实施线上教学,为了解线上教学的效果,随机抽取了100名学生对线上教学效果进行评分(满分100分),记低于80的评分为“效果一般”,不低于80分为“效果较好”
(1)根据所给数据完成下列表格;
效果一般效果较好合计
2545
40
合计

(2)用(1)中表格的数据估计全校线上教学的效果,用频率估计概率.从该校学生中任意抽取3人,记所抽取的3人中认为线上教学“效果一般”的人数为X,求X的分布列和数学期望及方差.
8 . 某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有个红球,个白球的甲箱和装有个红球、个白球的乙箱中,各随机摸出个球,在摸出的个球中,若都是红球,则获奖.
(1)求顾客抽奖次能获奖的概率;
(2)若顾客有次抽奖机会,记该顾客在次抽奖中将的次数为,求的分布列和数学期望.
9 . 甲、乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.甲乙两人的答题情况相互独立
(1)求甲得分的分布列和数学期望;
(2)求甲、乙两人同时入选的概率;
10 . 哈尔滨红肠已有近百年历史,是哈尔滨特产,也是黑龙江特产的代表,深受广大民众的喜爱,哈尔滨红肠是用大兴安岭的老果木熏制而成的,因此它除了肉香还会散发着浓郁的果木香.某调查机构从年龄在岁的游客中随机抽取100人,对是否有意向购买哈尔滨红肠进行调查,结果如下表:
年龄/岁
抽取人数182225278
有意向购买红肠的人数81722244

(1)若以年龄40岁为分界线,由以上统计数据完成下面的2×2列联表,并判断是否有97.5%的把握认为购买哈尔滨红肠与人的年龄有关?
年龄低于40岁的人数年龄不低于40岁的人数总计
有意向购买哈尔滨红肠的人数
无意向购买哈尔滨红肠的人数
总计

(2)用样本估计总体,用频率估计概率,从年龄在的所有游客中随机抽取3人,设这3人中打算购买哈尔滨红肠的人数为X,求X的分布列和数学期望.
参考数据:,其中.
0.150.100.050.0250.0100.0050.001
2.0722.7063.8415.0246.6357.87910.828