组卷网>知识点选题>利用二项分布期望方差公式求解期望和方差
显示知识点
显示答案
| 共计 1097 道试题
解答题 | 一般(0.65) |
1 . 产品开发是企业改进老产品、开发新产品,使其具有新的特征或用途,以满足市场需求的流程.某企业开发的新产品已经进入到样品试制阶段,需要对5个样品进行性能测试,现有甲、乙两种不同的测试方案,每个样品随机选择其中的一种进行测试,已知选择甲方案测试合格的概率为,选择乙方案测试合格的概率为,且每次测试的结果互不影响.
(1)若3个样品选择甲方案,2个样品选择乙方案.
(i)求5个样品全部测试合格的概率;
(ii)求4个样品测试合格的概率.
(2)若测试合格的样品个数的期望不小于3,求选择甲方案进行测试的样品个数.
更新:2022/07/06组卷:23
2 . 设随机变量ξ~B (2,p),若P(ξ≥1)=,则D(ξ)的值为_________.
3 . 若,则       
A.2B.1C.3D.4
4 . 2022年某学校组织“一路一带”知识竞赛活动,经过几次选拔,甲、乙两个班级最后进入决赛.决赛规定:通过完成一项活动作为夺冠的依据,从每个班级出4名选手,再从4名选手中随机抽取2人分别完成该项活动.已知甲班的4人中有3人可以完成该项活动,乙班的4人能正确完成该项活动的概率均为.甲、乙两班每个人对完成该活动是相互独立、互不影响的.
(1)求从甲、乙两个班级的选手中抽取的4人都能完成该项活动的概率;
(2)设从甲、乙两个班级抽取的选手中能完成该项活动的人数分别为,求随机变量的期望和方差,并由此分析由哪个班级更有希望夺冠.
5 . 下列关于随机变量X的说法正确的是(       
A.若X服从二项分布B(4,),
B.若X服从超几何分布H(4,2,10),则
C.若X的方差为DX),则
D.若X服从正态分布N(3,),且,则
6 . 为贯彻落实立德树人根本任务,坚持五育并举,某市委托厦门中学生助手调查学生对足球的喜爱程度,调查显示该市喜爱足球运动的学生占全市学生的,喜爱足球运动的学生中男、女生人数比例为
(1)在喜爱足球运动的学生中按性别比例分配样本,用分层抽样的方法抽取5人,再从中随机选取3人进行访谈.设随机选出的3人中女生人数为X,求X的分布列和数学期望
(2)学生甲断言“在全市学生中随机选取3人,这3人中喜爱足球运动的人数至少比不喜爱足球运动的人数多1的概率超过50%”.该学生判断是否正确?说明理由.
更新:2022/07/05组卷:37
单选题 | 一般(0.65) |
7 . 把27粒种子分别种在9个坑内,每坑3粒,每粒种子发芽的概率为.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种1次,每补种一个坑需12元,用X表示补种费用,则X的数学期望为(       
A.3元B.4元C.12元D.24元
更新:2022/07/05组卷:19
8 . 现有甲,乙两名篮球运动员,甲、乙两人各投篮一次,投中的概率分别,假设每次投篮是否投中,相互之间没有影响.(结果需用分数作答)
(1)求甲投篮3次,至少有2次未投中的概率;
(2)求两人各投篮2次,甲恰好投中2次且乙恰好投中1次的概率;
(3)设乙单独投篮3次,用表示投中的次数,求的分布列和数学期望.
9 . 已知随机变量,则       
A.B.1C.D.2
10 . 某食品厂为了检查一条自动包装流水线的生产情况,对该流水线上的产品进行简单随机抽样,获得数据如下表:
分组区间(单位:克)
产品件数34751

已知包装质量在中的产品为一等品,其余为二等品.
(1)估计从该流水线任取一件产品为一等品的概率;
(2)从该流水线上任取2件产品,设X为一等品的产品数量,求X的分布列和数学期望.