组卷网>知识点选题>参变分离法解决导数问题
解析
| 共计 527 道试题
1 . 已知函数与函数的图像上恰有两对关于轴对称的点,则实数的取值范围为(       
A.B.C.D.
2 . 已知函数
(1)的导函数,求的最小值;
(2)已知,证明:
(3)若恒成立,求的取值范围.
4 . 已知函数,则下列说法正确的是(       
A.当时,函数恰有两个零点
B.当时,不等式对任意恒成立
C.若函数有两个零点,则
D.当时,若不等式恒成立,则实数的取值范围为
2023·全国·高二专题练习
单选题 | 适中 (0.65) |
5 . 设函数上单调递减,则实数的取值范围是(       
A.B.C.D.
6 . 已知函数的导函数满足:,且,当时,恒成立,则实数的取值范围是________________.
7 . 已知函数.若对任意的,不等式恒成立,则实数的取值范围为__________
8 . 若函数上存在单调递减区间,则m的取值范围是______
9 . 已知函数.
(1)当时,求函数的单调区间;
(2)当时,证明
(3)若关于的不等式有解,求实数的取值范围.
10 . 已知函数的图象在点处的切线斜率为0.
(1)求上的单调区间;
(2)设的导函数,函数,若恒成立,求的取值范围.
共计 平均难度:一般