组卷网>知识点选题>值域最值求法
解析
| 共计 9889 道试题
1 . 已知函数.
(1)当时,最小值为,求实数的值;
(2)对任意实数与任意恒成立,求的取值范围.
2 . 新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病,面对前所未知、突如其来、来势汹汹的疫情天灾,习近平总书记亲自指挥、亲自部署,强调把人民生命安全和身体健康放在第一位.明确坚决打赢疫情防控的人民战争、总体战、阻击战.疫情爆发后,造成全球医用病毒检测设备短缺,盐城某企业计划引进医用病毒检测设备的生产线,生产这种设备的年固定成本为2500万元,每生产百台,需另投入生产成本万元,当年产量不足35百台时,;当年产量不小于35百台时,;该设备年产量最多不超过60百台,若每台设备售价6万元,通过市场分析,该企业生产的产品能全部销售完.
(1)求该企业年利润(万元)关于年产量(百台)的函数关系式(利润=销售额-成本);
(2)该企业年产量为多少百台时,所获利润最大?并求出最大利润.
3 . 设函数).
(1)若,试判断函数的单调性,并加以证明;
(2)若已知,且函数在区间上的最小值为,求实数的值.(提示:
4 . 已知函数
(1)当时,解不等式< 0;
(2)当时,求函数在区间上的值域;
(3)若不等式≥ - 6恒成立,求实数a的取值范围.
6 . 若函数,则的值域为___________.
8 . 一般地,若的定义域为,值域为,则称的“倍跟随区间”;特别地,若的定义域为,值域也为,则称的“跟随区间”.
(1)若的跟随区间,则______
(2)若函数存在跟随区间,则的最大值是______
9 . 下到说法正确的是(       ).
A.若函数的定义域为,则函数的定义域为
B.图象关于点成中心对称
C.幂函数上为减函数,则的值为
D.若,则的最大值是
10 . 生产A产品需要投入年固定成本5万元,每年生产万件,需要另外投入流动成本万元,且,每件产品售价为10元,且生产的产品当年能全部售完.
(1)写出利润(万元)关于年产量(万件)的函数解析式;(年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,该产品的年利润最大?最大年利润是多少?
共计 平均难度:一般