组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 2 道试题
1 . 某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成绩为0分;若至少投中一次,则该队进入第二阶段.第二阶段由该队的另一名队员投篮3次,每次投篮投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p,乙每次投中的概率为q,各次投中与否相互独立.
(1)若,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.
(2)假设
(i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?
(ii)为使得甲、乙所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?
2024-06-07更新 | 20470次组卷 | 18卷引用:贵州省贵阳市南明区部分学校2023-2024学年高二下学期6月联考数学试题
2 . 将2n(nN*)个有编号的球随机放入2个不同的盒子中,已知每个球放入这2个盒子的可能性相同,且每个盒子容纳球数不限记2个盒子中最少的球数为X(0≤XnXN*),则下列说法中正确的有(       
A.当n=1时,方差
B.当n=2时,
C.,使得P(X=k)>P(X=k+1)成立
D.当n确定时,期望
共计 平均难度:一般