组卷网 > 知识点选题 > 函数的应用
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 2 道试题
1 . 某科技公司生产某种芯片.由以往的经验表明,不考虑其他因素,该芯片每日的销售量y(单位:枚)与销售价格x(单位:元/枚,):当时满足关系式,(mn为常数);当时满足关系式.已知当销售价格为20元/枚时,每日可售出该芯片7000枚;当销售价格为30元/枚时,每日可售出该芯片1500枚.
(1)求mn的值,并确定y关于x的函数解析式;
(2)若该芯片的成本为10元/枚,试确定销售价格x的值,使公司每日销售该芯片所获利润最大.(x精确到0.01元/枚)
2 . 某蛋糕店制作并销售一款蛋糕,制作一个蛋糕成本4元,且以9元的价格出售,若当天卖不完,剩下的则无偿捐献给饲料加工厂.根据以往100天的资料统计,得到如表需求量表:
需求量/个[100,110)[110,120)[120,130)[130,140)[140,150]
天数1525302010

该蛋糕店一天制作了这款蛋糕XXN)个,以x(单位:个,100≤x≤150,xN)表示当天的市场需求量,T(单位:元)表示当天出售这款蛋糕获得的利润.
(1)当x=135时,若X=130时获得的利润为T1X=140时获得的利润为T2,试比较T1T2的大小;
(2)当X=130时,根据上表,从利润T不少于560元的天数中,按需求量分层抽样抽取6天.
i)求此时利润T关于市场需求量x的函数解析式,并求这6天中利润为650元的天数;
ii)再从这6天中抽取3天做进一步分析,设这3天中利润为650元的天数为ξ,求随机变量ξ的分布列及数学期望.
2020-06-15更新 | 254次组卷 | 1卷引用:安徽省合肥七中、合肥十中2020届高三下学期6月联考理科数学试题
共计 平均难度:一般