解题方法
1 . 已知等轴双曲线的顶点,分别是椭圆的左、右焦点,且是椭圆与双曲线某个交点的横坐标.
(1)求椭圆的方程;
(2)设直线与椭圆相交于,两点,以线段为直径的圆过椭圆的上顶点,求证:直线恒过定点.
(1)求椭圆的方程;
(2)设直线与椭圆相交于,两点,以线段为直径的圆过椭圆的上顶点,求证:直线恒过定点.
您最近一年使用:0次
2021-04-15更新
|
1088次组卷
|
5卷引用:吉林省松原市长岭县第二中学2021届高三下学期三模考试数学试题
吉林省松原市长岭县第二中学2021届高三下学期三模考试数学试题2021届新高考同一套题信息原创卷(六)山东省(新高考)2021届数学学科仿真模拟标准卷试题(一)湖北省荆门市钟祥市实验中学2020-2021学年高二下学期4月阶段检测(3)数学试题(已下线)专题2.11 圆锥曲线-定点、定值、定直线问题-2021年高考数学解答题挑战满分专项训练(新高考地区专用)
名校
解题方法
2 . 椭圆与的中心在原点,焦点分别在轴与轴上,它们有相同的离心率,并且的短轴为的长轴,与的四个焦点构成的四边形面积是.
(1)求椭圆与的方程;
(2)设是椭圆上非顶点的动点,与椭圆长轴两个顶点,的连线,分别与椭圆交于,点.
(i)求证:直线,斜率之积为常数;
(ii)直线与直线的斜率之积是否为常数?若是,求出该值;若不是,说明理由.
(1)求椭圆与的方程;
(2)设是椭圆上非顶点的动点,与椭圆长轴两个顶点,的连线,分别与椭圆交于,点.
(i)求证:直线,斜率之积为常数;
(ii)直线与直线的斜率之积是否为常数?若是,求出该值;若不是,说明理由.
您最近一年使用:0次
2017-08-17更新
|
231次组卷
|
6卷引用:吉林省松原市实验高级中学等三校2016届高三下学期联合模拟考试文数试题