组卷网 > 知识点选题 > 频率与概率
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 2 道试题
1 . 某机器生产商,对一次性购买两台机器的客户推出两种超过质保期后两年内的延保维修方案:
方案一:交纳延保金600元,在延保的两年内可免费维修2次,超过2次每次收取维修费1500元;
方案二:交纳延保金7845元,在延保的两年内可免费维修4次,超过4次每次收取维修费元.
某工厂准备一次性购买两台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了100台这种机器超过质保期后延保两年内维修的次数,统计得如表:

维修次数

0

1

2

3

机器台数

10

20

40

30

以这100台机器维修次数的频率代替一台机器维修次数发生的概率.记表示这两台机器超过质保期后延保的两年内共需维修的次数.
(1)求的分布列;
(2)以所需延保金与维修费用之和的期望值为决策依据,该工厂选择哪种延保方案更合算.
2021-08-04更新 | 199次组卷 | 1卷引用:河南省许昌市2020-2021学年高二下学期期末数学(理)试题
2 . 某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:
男生女生
支持不支持支持不支持
方案一200人400人300人100人
方案二350人250人150人250人
假设所有学生对活动方案是否支持相互独立.
(1)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;
(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率.
共计 平均难度:一般