组卷网 > 知识点选题 > 互斥事件
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 13 道试题
1 . 魔方,又叫鲁比可方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974年发明的机械益智玩具.魔方拥有竞速、盲拧、单拧等多种玩法,风靡程度经久未衰,每年都会举办大小赛事,是最受欢迎的智力游戏之一.通常意义下的魔方,是指狭义的三阶魔方.三阶魔方形状通常是正方体,由有弹性的硬塑料制成.常规竞速玩法是将魔方打乱,然后在最短的时间内复原.广义的魔方,指各类可以通过转动打乱和复原的几何体.魔方与华容道、法国的单身贵族(独立钻石棋)并称为智力游戏界的三大不可思议.在2018WCA世界魔方芜湖公开赛上,杜宇生以3.47秒的成绩打破了三阶魔方复原的世界纪录,勇夺世界魔方运动的冠军,并成为世界上第一个三阶魔方速拧进入4秒的选手.
(1)小王和小吴同学比赛三阶魔方,已知小王每局比赛获胜的概率均为,小吴每局比赛获胜的概率均为,若采用三局两胜制,两人共进行了局比赛,求的分布列和数学期望;
(2)小王和小吴同学比赛四阶魔方,首局比赛小吴获胜的概率为0.5,若小王本局胜利,则他赢得下一局比赛的概率为0.6,若小王本局失败,则他赢得下一局比赛的概率为0.5,为了赢得比赛,小王应选择“五局三胜制”还是“三局两胜制”?
2023-12-18更新 | 1136次组卷 | 5卷引用:7.3.1 离散型随机变量的均值——课后作业(巩固版)
2 . 第19届亚运会将于2023年9月23日至10月8日举办,本届亚运会共设40个竞赛大项.其中首次增设了电子竞技项目.与传统的淘汰赛不同,近年来一个新型的赛制“双败赛制”赢得了许多赛事的青睐.传统的淘汰赛失败一场就丧失了冠军争夺的权利,而在双败赛制下,每人或者每个队伍只有失败了两场才会淘汰出局,因此更有容错率.假设最终进入到半决赛有四支队伍,淘汰赛制下会将他们四支队伍两两分组进行比赛,胜者进入到总决赛,总决赛的胜者即为最终的冠军.双败赛制下,两两分组,胜者进入到胜者组,败者进入到败者组,胜者组两个队伍对决的胜者将进入到总决赛,败者进入到败者组.之前进入到败者组的两个队伍对决的败者将直接淘汰,胜者将跟胜者组的败者对决,其中的胜者进入总决赛,最后总决赛的胜者即为冠军,双败赛制下会发现一个有意思的事情,在胜者组中的胜者只要输一场比赛即总决赛就无法拿到冠军,但是其它的队伍却有一次失败的机会,近年来从败者组杀上来拿到冠军的不在少数,因此很多人戏谑这个赛制对强者不公平,是否真的如此呢?
   
这里我们简单研究一下两个赛制,假设四支队伍分别为ABCD,其中A对阵其他三个队伍获胜概率均为p,另外三支队伍彼此之间对阵时获胜概率均为.最初分组时AB同组,CD同组.
(1)若,在淘汰赛赛制下,AC获得冠军的概率分别为多少?
(2)分别计算两种赛制下A获得冠军的概率(用表示),并据此简单分析一下双败赛制下对队伍的影响,是否如很多人质疑的“对强者不公平”?
2023-10-10更新 | 1118次组卷 | 9卷引用:12.4 随机事件的独立性(四大题型)(分层练习)-2023-2024学年高二数学同步精品课堂(沪教版2020必修第三册)
3 . 如图,甲乙做游戏,两人通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,并规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两人都上一个台阶.如果一方连续赢两次,那么他将额外获得上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时游戏结束,则游戏结束时恰好划拳3次的概率为______

   

2023-09-24更新 | 1095次组卷 | 7卷引用:12.4 随机事件的独立性(四大题型)(分层练习)-2023-2024学年高二数学同步精品课堂(沪教版2020必修第三册)
4 . 已知共15张卡牌由5张红卡、10张其它颜色卡组成,混合后分3轮发出,每轮随机发出5张卡.
(1)求事件“第1轮无红色卡牌”的概率
(2)求事件“第1轮有至少3张红色卡牌”的概率
(3)求事件“每轮均有红色卡牌”的概率
2022-11-05更新 | 1173次组卷 | 7卷引用:7.4.2 超几何分布 (精练)-【精讲精练】2022-2023学年高二数学下学期同步精讲精练(人教A版2019选择性必修第三册)
智能选题,一键自动生成优质试卷~
5 . 甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四局结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为,负的概率为,且每局比赛之间的胜负相互独立.
(1)求第三局结束时乙获胜的概率;
(2)求甲获胜的概率.
2022-07-07更新 | 4438次组卷 | 18卷引用:专题10.4 事件的相互独立性(重难点题型检测)-2022-2023学年高一数学举一反三系列(人教A版2019必修第二册)
6 . 某学校组织校园安全知识竞赛.在初赛中有两轮答题,第一轮从A类的5个问题中任选两题作答,若两题都答对,则得40分,否则得0分;第二轮从B类的5个问题中任选两题作答,每答对1题得30分,答错得0分若两轮总积分不低于60分则晋级复赛.
小芳和小明同时参赛,已知小芳每个问题答对的概率都为0.5.在A类的5个问题中,小明只能答对4个问题;在B类的5个问题中,小明每个问题答对的概率都为0.4.他们回答任一问题正确与否互不影响.
(1)求小明在第一轮得40分的概率;
(2)以晋级复赛的概率大小为依据,小芳和小明谁更容易晋级复赛?
2022-07-05更新 | 3647次组卷 | 22卷引用:4.1.3独立性与条件概率的关系(2)
7 . 甲罐中有5个红球,2个白球和3个黑球, 乙罐中有4个红球,3个白球和3个黑球(球除颜色外,大小质地均相同).先从甲罐中随机取出一球放入乙罐,分别以表示由甲罐中取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐中取出的球是红球的事件.下列结论正确的个数是(       
①事件相互独立;
是两两互斥的事件;


A.5B.4C.3D.2
2022-03-25更新 | 5543次组卷 | 11卷引用:4.1.3独立性与条件概率的关系(1)
8 . 一个不透明的口袋中有8个大小相同的球,其中红球5个,白球1个,黑球2个,则下列选项正确的有(       
A.从该口袋中任取3个球,设取出的红球个数为,则数学期望
B.每次从该口袋中任取一个球,记录下颜色后放回口袋,先后取了3次,设取出的黑球次数为,则数学期望
C.从该口袋中任取3个球,设取出的球的颜色有X种,则数学期望
D.每次从该口袋中任取一个球,不放回,拿出红球即停,设拿出的黑球的个数为Y,则数学期望
2022-02-28更新 | 2959次组卷 | 7卷引用:3.2.3 离散型随机变量的数学期望(同步练习)-【素养提升—课时练】2022-2023学年高二数学湘教版选择性必修第二册检测 (基础篇)
9 . 某新型双轴承电动机需要装配两个轴承才能正常工作,且两个轴承互不影响.现计划购置甲,乙两个品牌的轴承,两个品牌轴承的使用寿命及价格情况如下表:

品牌

价格(元/件)

使用寿命(月)

已知甲品牌使用个月或个月的概率均为,乙品牌使用个月或个月的概率均为
(1)若从件甲品牌和件乙品牌共件轴承中,任选件装入电动机内,求电动机可工作时间不少于个月的概率;
(2)现有两种购置方案,方案一:购置件甲品牌;方案二:购置件甲品牌和件乙品牌(甲、乙两品牌轴承搭配使用).试从性价比(即电动机正常工作时间与购置轴承的成本之比)的角度考虑,选择哪一种方案更实惠?
2021-04-29更新 | 2670次组卷 | 6卷引用:人教A版(2019) 选修第三册 过关斩将 第七章 7.3.1 离散型随机变量的均值
10 . 受新冠肺炎疫情的影响,2020年一些企业改变了针对应届毕业生的校园招聘方式,将线下招聘改为线上招聘.某世界五百强企业的线上招聘方式分资料初审、笔试、面试这三个环节进行,资料初审通过后才能进行笔试,笔试合格后才能参加面试,面试合格后便正式录取,且这几个环节能否通过相互独立.现有甲、乙、丙三名大学生报名参加了企业的线上招聘,并均已通过了资料初审环节.假设甲通过笔试、面试的概率分别为 ;乙通过笔试、面试的概率分别为;丙通过笔试、面试的概率与乙相同.
(1)求甲、乙、丙三人中恰有一人被企业正式录取的概率;
(2)求甲、乙、丙三人中至少有一人被企业正式录取的概率;
(3)为鼓励优秀大学生积极参与企业的招聘工作,企业决定给报名参加应聘且通过资料初审的大学生一定的补贴,补贴标准如下表:
参与环节笔试面试
补贴(元)100200
记甲、乙、丙三人获得的所有补贴之和为元,求的分布列和数学期望.
2021-03-03更新 | 4834次组卷 | 11卷引用:专题7.3离散型随机变量的数字特征(B卷提升篇)-2020-2021学年高二下学期数学选择性必修第三册同步单元AB卷(新教材人教A版,浙江专用)
共计 平均难度:一般