组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 65 道试题
1 . 某大学组织宣传小分队进行法律法规宣传,某宣传小分队记录了前9天每天普及的人数,得到下表:
时间x(天)123456789
每天普及的人数y8098129150203190258292310
(1)从这9天的数据中任选2天的数据,以X表示2天中普及人数不少于200人的天数,求X的分布列和数学期望;
(2)由于统计人员的疏忽,第5天的数据统计有误,如果去掉第5天的数据,试用剩下的数据求出每天普及的人数y关于天数x的线性回归方程.
参考数据:.附:对于一组数据(),(),……,(),其回归直线的斜率和截距的最小二乘估计分别为:.
2024-08-23更新 | 114次组卷 | 3卷引用:江苏省南通一中2023-2024学年高二年级数学下学期第二次月考(含答案)
2 . 某学校为提高学生身体素质,号召全校学生参加体育锻炼,结合每日统计的运动情况,对每日平均运动10000步或以上的学生授予“运动达人”称号,低于10000步称为“参与者”,统计了200名学生在某月的运动数据,结果如下:

运动达人

参与者

合计

男生

70

女生

80

合计

80

200

(1)完善列联表并说明:是否有的把握认为获得“运动达人”称号与性别有关?
(2)从全校“运动达人”中按性别分层抽取8人,再从8人中选取3人参加特训,将特训的人中男生人数记为,求的分布列与均值.
参考公式:

10.828

2024-08-08更新 | 100次组卷 | 1卷引用:江苏省南京市南京师范大学附属中学2023-2024学年高二下学期5月模拟考试数学试卷
3 . 下列命题正确的是(       
A.若随机变量满足,则
B.若,则
C.若,则
D.若分布,,则
2024-06-19更新 | 295次组卷 | 2卷引用:江苏省泰州市2023-2024学年高二下学期6月期末考试数学试题
4 . 已知20条试题中有8条选择题,甲无放回地依次从中抽取5条题,乙有放回地依次从中抽取5条题,甲、乙每次均抽取一条试题,抽出的5条题中选择题的条数分别为的期望分别为,方差分别为,则(       
A.B.
C.D.
2024-06-19更新 | 251次组卷 | 2卷引用:江苏省泰州市2023-2024学年高二下学期6月期末考试数学试题
智能选题,一键自动生成优质试卷~
5 . 袋中有6个大小相同的球,其中4个黑球,2个白球,现从中任取3个球,记随机变量为其中白球的个数,随机变量为其中黑球的个数,若取出一个白球得2分,取出一个黑球得1分,随机变量为取出3个球的总得分,则下列结论正确的是(       
A.B.
C.D.
2024-06-08更新 | 422次组卷 | 5卷引用:江苏省靖江高级中学2023-2024学年高二下学期5月调研测试数学试题
6 . 某社区为了推动全民健身,增加人们对体育运动的兴趣,随机抽取了男,女各 200 人做 统计调查. 统计显示,被调查的人中,喜欢运动的男性有 100 人,不喜欢运动的女性有 50 人.
(1)完成下面列联表,并判断能否在犯错误概率不超过 0.005的情况下认为人们喜欢运动与性别有关;

喜欢

不喜欢

合计

男性




女性




合计




(2)为了鼓励全民运动,社区开展一次趣味体育比赛,并设置3个奖项,每个奖项有且仅有 一人获取,每人最多只能获得 1 个奖项; 现从这 400 人中选出男性4人,女性4人参加 比赛,记为获奖的男性人数,求的分布列和数学期望.
附:

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

7 . 某城市人口数量950万人左右,共900个社区.在实施垃圾分类之前,随机抽取300个社区,并对这300个社区某天产生的垃圾量(单位:吨)进行了调查,每个社区在这一天的垃圾量X大致服从正态分布.将垃圾量超过32吨天的社区确定为“超标”社区.
(1)请利用正态分布知识估计这900个社区中“超标”社区的个数;(结果取整数部分)
(2)通过研究样本原始数据发现,抽取的300个社区中这一天共有7个“超标”社区,市政府决定对7个“超标”社区的垃圾来源进行跟踪调查.现计划在这7个“超标”社区中任取4个进行跟踪调查,已知这7个社区中有3个社区在这一天的垃圾量超过35吨.设为抽到的这一天的垃圾量超过35吨的社区个数,求的概率分布与数学期望;
(3)用样本的频率代替总体的概率,现从该市所有社区中随机抽取50个社区,记为这一天垃圾量超过32吨的小区的个数,求的值.
(参考数据:)
2024-05-25更新 | 1180次组卷 | 4卷引用:江苏省南京市六校联合体学校2023-2024学年高二下学期5月月考数学试题
8 . 为深入推进传统制造业改造提升,依靠创新引领产业升级,某设备生产企业对现有生产设备进行技术攻坚突破.设备生产的零件的直径为X(单位:nm).
(1)现有旧设备生产的零件有10个,其中直径大于10nm的有2个.现从这10个零件中随机抽取3个.记表示取出的零件中直径大于10nm的零件的个数,求的分布列及数学期望
(2)技术攻坚突破后设备生产的零件的合格率为,每个零件是否合格相互独立.现任取4个零件进行检测,若合格的零件数超过半数,则可认为技术攻坚成功.求技术攻坚成功的概率及的方差;
(3)若技术攻坚后新设备生产的零件直径,从生产的零件中随机取出10个,求至少有一个零件直径大于10.4nm的概率.
参考数据:若,则
9 . 某学校号召学生参加“每天锻炼1小时”活动,为了解学生参加活动的情况,统计了全校所有学生在假期每周锻炼的时间,现随机抽取了60名同学在某一周参加锻炼的数据,整理如下列联表:

性别

不经常锻炼

经常锻炼

合计

男生

7

女生

16

30

合计

21

注:将一周参加锻炼时间不小于3小时的称为“经常锻炼”,其余的称为“不经常锻炼”.
(1)请完成上面列联表,并依据小概率值的独立性检验,能否认为性别因素与学生锻炼的经常性有关系;
(2)将一周参加锻炼为0小时的称为“极度缺乏锻炼”.在抽取的60名同学中有5人“极度缺乏锻炼”.以样本频率估计概率.若在全校抽取20名同学,设“极度缺乏锻炼”的人数为X,求X的数学期望和方差
(3)将一周参加锻炼6小时以上的同学称为“运动爱好者”.在抽取的60名同学中有10名“运动爱好者”,其中有7名男生,3名女生.为进一步了解他们的生活习惯,在10名“运动爱好者”中,随机抽取3人进行访谈,设抽取的3人中男生人数为Y,求Y的分布列和数学期望.
附:

0.1

0.05

0.01

2.706

3.841

6.635

10 . 2024年1月4日,教育部在京召开全国“双减”工作视频调度会,会议要求进一步提高双减政治站位,将“双减”工作作为重中之重,坚定不移推进,成为受老师和家长关注的重要话题.某学校为了解家长对双减工作的满意程度进行问卷调查(评价结果仅有“满意”、“不满意”),从所有参与评价的对象中随机抽取120人进行调查,部分数据如表所示(单位:人):

满意

不满意

合计

男性

10

50

女性

60

合计

120

(1)请将列联表补充完整,试根据小概率值的独立性检验,能否认为“对双减工作满意程度的评价与性别有关”?
(2)若将频率视为概率,从所有给出“满意”的家长中随机抽取3人,用随机变量表示被抽到的男性家长的人数,求的分布列;
(3)在抽出的120人中,从给出“满意”的家长中利用分层抽样的方法抽取10人,从给出“不满意”的对象中抽取人.现从这人中,随机抽出2人,用随机变量表示被抽到的给出“满意”的女性家长的人数.若随机变量的数学期望不小于1,求的最大值.
参考公式:,其中
参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

2024-05-08更新 | 738次组卷 | 5卷引用:专题07 回归方程与独立性检验--高二期末考点大串讲(苏教版2019选择性必修第二册)
共计 平均难度:一般