组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 10 道试题
解答题-问答题 | 适中(0.65) |
名校
1 . 一个池塘里的鱼的数目记为N,从池塘里捞出200尾鱼,并给鱼作上标识,然后把鱼放回池塘里,过一小段时间后再从池塘里捞出500尾鱼,表示捞出的500尾鱼中有标识的鱼的数目.
(1)若,求的数学期望;
(2)已知捞出的500尾鱼中15尾有标识,试给出N的估计值(以使得最大的N的值作为N的估计值).
2 . 在某校举办“青春献礼二十大,强国有我新征程”的知识能力测评中,随机抽查了100名学生,其中共有4名女生和3名男生的成绩在90分以上,从这7名同学中每次随机抽1人在全校作经验分享,每位同学最多分享一次,记第一次抽到女生为事件A,第二次抽到男生为事件B
(1)求
(2)若把抽取学生的方式更改为:从这7名学生中随机抽取3人进行经验分享,记被抽取的3人中女生的人数为X,求X的分布列和数学期望.
2023-02-15更新 | 2597次组卷 | 13卷引用:云南省红河州2023届高三第一次复习统一检测(一模)数学试题
3 . 端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,白粽8个,这两种粽子的外观完全相同,从中任意选取3个.
(1)求既有豆沙粽又有白粽的概率;
(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.
4 . 某公司为监督检查下属的甲、乙两条生产线所生产产品的质量,分别从甲、乙两条生产线出库的产品中各随机抽取了100件产品,并对所抽取产品进行检验,检验后发现,甲生产线的合格品占八成、优等品占两成,乙生产线的合格品占九成、优等品占一成(合格品与优等品间无包含关系).
(1)用分层随机抽样的方法从样品的优等品中抽取6件产品,在这6件产品中随机抽取2件,记这2件产品中来自甲生产线的产品个数有个,求的分布列与数学期望;
(2)消费者对该公司产品的满意率为,随机调研5位购买过该产品的消费者,记对该公司产品满意的人数有人,求至少有3人满意的概率及的数学期望与方差.
2024-05-28更新 | 847次组卷 | 8卷引用:云南省昭通市水富市第一中学2023-2024学年高二下学期第三次月考(5月)数学试题
智能选题,一键自动生成优质试卷~
5 . 2023年冬,甲型流感病毒来势汹汹.某科研小组经过研究发现,患病者与未患病者的某项医学指标有明显差异.在某地的两类人群中各随机抽取20人的该项医学指标作为样本,得到如下的患病者和未患病者该指标的频率分布直方图:

利用该指标制定一个检测标准,需要确定临界值,将该指标小于的人判定为阳性,大于或等于的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,用频率估计概率.
(1)当临界值时,求漏诊率和误诊率
(2)从指标在区间样本中随机抽取2人,记随机变量为未患病者的人数,求的分布列和数学期望;
(3)在该地患病者占全部人口的5%的情况下,记为该地诊断结果不符合真实情况的概率.当时,直接写出使得取最小值时的的值.
2024-01-22更新 | 766次组卷 | 4卷引用:云南省大理白族自治州民族中学2023-2024学年高三下学期5月月考数学试卷
2014·北京昌平·二模
6 . 甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性较大?
2019-09-18更新 | 3829次组卷 | 29卷引用:云南省名校2019-2020学年高考适应性月考统一考试数学(理)试题
7 . 春节期间某网络支付平台开展集“福”字活动:共有5种不同的“福”字电子卡,每完成一笔网络支付交易就能随机获赠一张“福”字卡,集齐5张不同的“福”字卡即可获奖.某网购平台上购买一袋脆干面,内随赠一张水浒传一百单八将的好汉卡,集齐完整一套好汉卡将获得生产商颁发的大奖(好汉卡一套共108张,每张上画有一将,每将都有很多张).
(1)若每完成一笔网络支付交易获赠每种“福”字卡的可能性相同.
①求获得第二种“福”字卡的概率;
②平均要完成多少笔交易才能集齐5个不同的“福”字卡?
(2)如果购买一袋脆干面随赠一张一百单八将的好汉卡中每一张的可能性是一样的,那么平均要购买多少袋脆干面才能获得生产商颁发的大奖?(结果保留到整数)
参考信息:
①.如果在一次试验中某事件发生的概率是p,那么在独立重复试验中,某事件第1次发生时所作试验的次数的概率分本,称服从几何分布,记作的数学期望
②.若干个相互独立、且是按先后次序依次连续发生的随机变量之和的数学期望等于这些随机变量数学期望的之和;
③.
2021-01-03更新 | 2081次组卷 | 7卷引用:云南省昆明市第一中学2021届高三年级12月月考理科数学试题
8 . 某冰糖橙是甜橙的一种,以味甜皮薄著称.该橙按照等级可分为四类:珍品、特级、优级和一级.某采购商打算订购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱(每箱有5kg),利用橙子的等级分类标准得到的数据如下表:
等级珍品特级优级一级
箱数40301020
(1)若将频率作为概率,从这100箱橙子中有放回地随机抽取4箱,求恰好有2箱是一级品的概率;
(2)利用样本估计总体,果园老板提出两种方案供采购商参考:方案一:不分等级出售,价格为27元/kg;方案二:分等级出售,橙子价格如下表.
等级珍品特级优级一级
价格/(元∕kg)36302418
从采购商的角度考虑,应该采用哪种方案?
(3)用分层随机抽样的方法从这100箱橙子中抽取10箱,再从抽取的10箱中随机抽取3箱,X表示抽取的珍品的箱数,求X的分布列及均值.
9 . 为了引导学生阅读世界经典文学名著,某学校举办“名著读书日”活动,每个月选择一天为“名著读书日”,并给出一些推荐书目.为了了解此活动促进学生阅读文学名著的情况,该校在此活动持续进行了一年之后,随机抽取了校内100名学生,调查他们在开始举办读书活动前后的一年时间内的名著阅读数量,所得数据如下表:

不少于5本

少于5本

合计

活动前

35

65

100

活动后

60

40

100

合计

95

105

200

(1)依据小概率值的独立性检验,分析举办该读书活动对学生阅读文学名著是否有促进作用;
(2)已知某学生计划在接下来的一年内阅读6本文学名著,其中4本国外名著,2本国内名著,现从6本名著中随机抽取3本在上半年读完,求上半年读完的国内名著本数的分布列及数学期望.
附:,其中
临界值表:

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

2024-08-20更新 | 297次组卷 | 1卷引用:云南省三校2025届高三高考备考实用性联考卷(二)
10 . 为了研究学生的性别与是否喜欢运动的关联性,随机调查了某中学的50名学生,整理得到如下列联表:
男学生女学生合计
喜欢运动8412
不喜欢运动23638
合计104050
(1)依据的独立性检验,能否认为学生的性别与是否喜欢运动有关联?
(2)现从喜欢运动的学生中随机抽取3人进行进一步的检测,设随机变量为男学生的人数,求的分布列和数学期望.
附:
0.100.050.0100.0050.001
2.7063.8416.6357.87910.828
参考公式:,其中.
2024-07-08更新 | 98次组卷 | 1卷引用:云南省曲靖市麒麟区2023-2024学年高二下学期7月期末考试数学试题
共计 平均难度:一般