组卷网 > 高中数学综合库 > 平面解析几何 > 圆锥曲线 > 双曲线 > 双曲线标准方程的求法 > 求双曲线的轨迹方程
题型:解答题-证明题 难度:0.4 引用次数:835 题号:22829147
已知M是圆O上任意一点,关于点M的对称点为N,线段的垂直平分线与直线相交于点T,记点T的轨迹为曲线C
(1)求曲线C的方程;
(2)设)为曲线C上一点,不与x轴垂直的直线l与曲线C交于GH两点(异于E点).若直线GEHE的斜率之积为2,求证:直线l过定点.
2024·江西·二模 查看更多[4]

相似题推荐

解答题-证明题 | 较难 (0.4)
名校
解题方法
【推荐1】已知圆,定点,如图所示,圆上某一点恰好与点关于直线对称,设直线与直线的交点为.
   
(1)求证:为定值,并求出点的轨迹方程;
(2)设为曲线上一点,为圆上一点(均不在轴上).直线的斜率分别记为,且.求证:直线过定点,并求出此定点的坐标.
2023-06-01更新 | 639次组卷
解答题-证明题 | 较难 (0.4)
名校
【推荐2】已知动点分别与定点连线的斜率乘积
(1)求动点的轨迹
(2)设点位于第一象限,的右焦点,的平分线交于点,求证:
2023-11-23更新 | 357次组卷
解答题-问答题 | 较难 (0.4)
名校
解题方法
【推荐3】已知点M为圆上的动点,点,延长N,使得,线段的垂直平分线交直线于点P,记P的轨迹为
(1)求的方程;
(2)直线l交于AB两点,且,求的面积的最小值.
2023-02-19更新 | 757次组卷
共计 平均难度:一般