组卷网 > 高中数学综合库 > 三角函数与解三角形 > 解三角形 > 解三角形的实际应用 > 正、余弦定理的实际应用 > 高度测量问题
题型:解答题-问答题 难度:0.65 引用次数:367 题号:9409974
在数学建模课上,老师给大家带来了一则新闻:“2019年8月16日上午,423米的东莞第一高楼民盈国贸中心2号楼(以下简称“国贸中心”)正式封顶,随着最后一方混凝土浇筑到位,标志着东莞最高楼纪录诞生,由东莞本地航母级企业民盈集团刷新了东莞天际线,比之前的东莞第一高楼台商大厦高出134米.”在同学们的惊叹中,老师提出了问题:国贸中心真有这么高吗?我们能否运用所学知识测量验证一下?一周后,两个兴趣小组分享了他们各自的测量方案.
第一小组采用的是“两次测角法”:他们在国贸中心隔壁的会展中心广场上的点测得国贸中心顶部的仰角为,正对国贸中心前进了米后,到达点,在点测得国贸中心顶部的仰角为,然后计算出国贸中心的高度(如图).
第二小组采用的是“镜面反射法”:在国贸中心后面的新世纪豪园一幢11层楼(与国贸中心处于同一水平面,每层约3米)楼顶天台上,进行两个操作步骤:①将平面镜置于天台地面上,人后退至从镜中能看到国贸大厦的顶部位置,测量出人与镜子的距离为米;②正对国贸中心,将镜子前移米,重复①中的操作,测量出人与镜子的距离为米.然后计算出国贸中心的高度(如图).
实际操作中,第一小组测得米,,最终算得国贸中心高度为;第二小组测得米,米,米,最终算得国贸中心高度为;假设他们测量者的“眼高”都为米.

(1)请你用所学知识帮两个小组完成计算(参考数据:,答案保留整数结果);
(2)你认为哪个小组的方案更好,说出你的理由.
【知识点】 高度测量问题解读

相似题推荐

解答题-问答题 | 适中 (0.65)
【推荐1】山顶有一座石塔,已知石塔的高度为.
(1)如图,若以为观测点,在塔顶处测得地面上一点A的俯角为,在塔底处测得A处的俯角为,求山的高度.
      
(2)如图,若将观测点选在地面的直线上,其中是塔顶在地面上的正投影,当观测点上满足时,看的视角(即点与点仰角的差)最大,求山的高度.
   
2023-08-10更新 | 175次组卷
解答题-问答题 | 适中 (0.65)
【推荐2】潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度(单位:米),如图所示,垂直放置的标杆的高度米,已知.

(1)该班同学测得一组数据,,请据此算出的值;
(2)该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离(单位:米),使的差较大,可以提高测量精确度,若观光塔高度为136米,问为多大时的值最大?
2017-11-17更新 | 342次组卷
解答题-应用题 | 适中 (0.65)
名校
【推荐3】(1)某校运动会开幕式上举行升旗仪式,旗杆正好处在坡角为的观礼台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部B的仰角分别为,第一排和最后一排的距离为米(如图所示),旗杆底部与第一排在同一水平面上,若国歌播放的时间约为50秒,升旗手应以约多大的速度匀速升旗?

(2)为绘制海底地貌图,测量海底两点CD间的距离,海底探测仪沿水平方向在AB两点进行测量,ABCD在同一个铅垂平面内.海底探测仪测得,同时测得海里.求CD之间的距离.

2024-05-29更新 | 188次组卷
共计 平均难度:一般