名校
1 . 对于函数,若,则称为的“不动点”;若,则称为的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为和,即,.
(1)求证:;
(2)若,且,求实数的取值范围.
(1)求证:;
(2)若,且,求实数的取值范围.
您最近一年使用:0次
2018-12-15更新
|
1781次组卷
|
7卷引用:2004年湖南省高中数学竞赛试题
2004年湖南省高中数学竞赛试题湖南省长沙市长郡中学2020-2021学年高一上学期适应性调查考试数学试题江西省景德镇一中2020-2021学年高一(2班)上学期期末考试数学试题(已下线)专题1.1—集合—2022届高三数学一轮复习精讲精练湖南省长沙市长郡中学2021-2022学年高一上学期第一次适应性调查数学试题(已下线)第1章集合与常用逻辑用语专练1 集合-2022届高三数学一轮复习(已下线)模块二 大招16 不动点与稳定点
名校
2 . 已知函数.
(Ⅰ)当时,函数在区间上的最小值为-5,求的值;
(Ⅱ)设,且有两个极值点,.
(i)求实数的取值范围;
(ii)证明:.
(Ⅰ)当时,函数在区间上的最小值为-5,求的值;
(Ⅱ)设,且有两个极值点,.
(i)求实数的取值范围;
(ii)证明:.
您最近一年使用:0次
2019-04-20更新
|
1985次组卷
|
5卷引用:贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学(理)试题
贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学(理)试题2020届陕西省西安交大附中学南校区高三上学期期中数学(理)试题2020届浙江省温州市新力量联盟高三上学期期末数学试题(已下线)专题10 导数与函数的极值、最值-冲刺2020高考跳出题海之高三数学模拟试题精中选萃(已下线)专题03 利用导数求函数的极值、最值(第六篇)-备战2020年高考数学大题精做之解答题题型全覆盖
名校
解题方法
3 . 已知函数在处的切线方程为
(1).求的解析式;
(2).若对任意的,均有求实数k的范围;
(3).设为两个正数,求证:
(1).求的解析式;
(2).若对任意的,均有求实数k的范围;
(3).设为两个正数,求证:
您最近一年使用:0次
4 . 设,:把平面上任意一点映射为函数.
(1)证明:不存在两个不同的点对应于同一个函数;
(2)证明:当时,,为常数;
(3)设时,,,在映射的作用下,作为像,求其原像,并说明它是什么图像?
(1)证明:不存在两个不同的点对应于同一个函数;
(2)证明:当时,,为常数;
(3)设时,,,在映射的作用下,作为像,求其原像,并说明它是什么图像?
您最近一年使用:0次