组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
已选知识点:
全部清空
解析
| 共计 711 道试题
1 . 矮化密植是指应用生物或栽培措施使果树生长树冠紧凑的方法,它与常规的矮小栽培相比有许多优势,如采用这种矮化果树可以建立比常规果园定植密度更高的果园,不仅能提高土壤及光能利用率,还能够获得更多的早期经济效益.某乡镇计划引进AB两种矮化果树,已知A种矮化果树种植成功率为,成功后每公顷收益7.5万元;B种矮化果树种植成功率为,成功后每公顷收益9万元.假设种植不成功时,种植AB两种矮化果树每公顷均损失1.5万元,每公顷是否种植成功相互独立.
(1)甲种植户试种两种矮化果树各1公顷,总收益为X万元,求X的分布列及数学期望;
(2)乙种植户有良田6公顷,本计划全部种植A,但是甲劝说乙应该种植两种矮化果树各3公顷,请按照总收益的角度分析一下,乙应选择哪一种方案?
2024-01-10更新 | 382次组卷 | 5卷引用:2024届河南省名校学术联盟高考模拟信息卷&押题卷数学(三)
2 . 银行储蓄存款是一种风险较小的投资方式,将一定数额的本金存入银行,约定存期,到期后就可以得到相应的利息,从而获得收益,设存入银行的本金为P(元),存期为m(年),年化利率为r,则到期后的利息(元).以下为上海某银行的存款利率:
存期一年二年三年
年化利率1.75%2.25%2.75%
(1)洪老师将10万元在上海某银行一次性存满二年,求到期后的本息和(本金与利息的总和);
(2)杜老师准备将10万元在上海某银行存三年,有以下三种方案:
方案①:一次性存满三年;
方案②:先存二年,再存一年;
方案③:先存一年,再续存一年,然后再续存一年;
通过计算三种方案的本息和(精确到小数点后2位)判断哪一种方案更合算,并基于该实际结果给予杜老师一般性的银行储蓄存款的建议.
2022-07-02更新 | 273次组卷 | 4卷引用:上海市建平中学2021-2022学年高一下学期期末数学试题
3 . 直三棱柱中,已知.

(1)若的中点,求三棱锥的体积,并证明:平面
(2)将两块形状与该直三棱柱完全相同的木料按如下图所示两种方案沿阴影面进行切割,把木料一分为二,留下体积较大的一块木料.根据你所学的知识,请判断采用哪一种方案会使留下的木料表面积较大,并求出这个较大的表面积和说明理由.
2021-10-29更新 | 374次组卷 | 6卷引用:湖南省永州市第一中学2020-2021学年高一下学期期中数学试题
4 . 某“双一流A类”大学就业部从该校2020年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率直方图,同一组数据用该区间的中点值作代表.

(1)求这100人月薪收入的样本平均数和样本方差;
(2)该校在某地区就业的2018届本科毕业生共50人,决定于2019年国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:
方案一:设,月薪落在区间Ω左侧的每人收取400元,月薪落在区间Ω内的每人收取600元,月薪落在区间Ω右侧的每人收取800元;
方案二:按每人个月薪水的3%收取.
用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用.
参考数据:.
2022-08-21更新 | 641次组卷 | 5卷引用:苏教版(2019) 必修第二册 过关斩将 第14章 本章达标检测
5 . 统计某公司名推销员的月销售额(单位:千元)得到如下频率分布直方图.

(1)同一组数据用该区间的中间值作代表,求这名推销员的月销售额的平均数与方差
(2)请根据这组数据提出使的推销员能够完成销售指标的建议;
(3)现有两种奖励机制:
方案一:设,销售额落在左侧,每人每月奖励千元;销售额落在内,每人每月奖励千元;销售额落在右侧,每人每月奖励千元.
方案二:每人每月奖励其月销售额的
用统计的频率进行估算,选择哪一种方案公司需提供更多的奖励金?(参考数据:
记:(其中对应的频率).
2021-06-23更新 | 1346次组卷 | 5卷引用:河南名校联盟2020-2021学年高一下学期期中考试数学(文)试题
6 . 某高校为了更好的掌握学校毕业生的发展情况成立了校友联络部,调查统计学生毕业后的就业、收入、发展、职业幸福感等情况,校友联络部在2020年已就业的毕业生中随机抽取了人进行了问卷调查,经调查统计发现,他们的月薪在元到元(不含元)之间,经调查问卷数据表按照第,第,第,第,第,第,第绘制成如下的频率分布直方图;

若月薪落在区间的左侧,则认为该毕业生属“就业不理想”的学生,学校将联系本人,从而为毕业生就业提供更好的指导意见,其中分别为样本平均数和样本标准差,已知元.
(1)现该校毕业生小李月薪为元,试判断小李是否属于“就业不理想”的学生;
(2)为感谢同学们对这项调查工作的支持,校友联络部现利用分层抽样的方法从样本的第组和第组中抽取人,各赠送一份礼品,并从这人中再抽取人,各赠送某款智能手机部,求获赠智能手机的人中恰有个人月薪少于元的概率;
(3)位于省会城市的该校毕业生共人,他们决定于2021年元旦期间举办一次校友会,并收取一定的活动经费,假定这人所抽取样本中的人月薪分布情况相同,并用样本频率进行估计,现有两种收费方案:
方案一:按每人一个月薪水的收取(同一组中的数据用该组区间的中点值代表);
方案二:月薪不低于元的每人收取元,月薪不低于元但低于元的每人收取元,月薪低于元的不收取任何费用.
问:哪一种收费方案最终总费用更少?
7 . 某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:

(1)现从去年的消费金额超过3 200元的消费者中随机抽取2人,求至少有1位消费者去年的消费金额在(3 200,4 000]内的概率;
(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

会员等级

消费金额

普通会员

2 000

银卡会员

2 700

金卡会员

3 200

预计去年消费金额在(0,1 600]内的消费者今年都将会申请办理普通会员,消费金额在(1 600,3 200]内的消费者都将会申请办理银卡会员,消费金额在(3 200,4 800]内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:
方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.
方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.
2021-01-12更新 | 915次组卷 | 5卷引用:黑龙江省哈尔滨市第六中学2019届高三第二次模拟考试数学(理)试题
8 . 某新型双轴承电动机需要装配两个轴承才能正常工作,且两个轴承互不影响.现计划购置甲,乙两个品牌的轴承,两个品牌轴承的使用寿命及价格情况如下表:

品牌

价格(元/件)

使用寿命(月)

已知甲品牌使用个月或个月的概率均为,乙品牌使用个月或个月的概率均为
(1)若从件甲品牌和件乙品牌共件轴承中,任选件装入电动机内,求电动机可工作时间不少于个月的概率;
(2)现有两种购置方案,方案一:购置件甲品牌;方案二:购置件甲品牌和件乙品牌(甲、乙两品牌轴承搭配使用).试从性价比(即电动机正常工作时间与购置轴承的成本之比)的角度考虑,选择哪一种方案更实惠?
2021-04-29更新 | 2661次组卷 | 6卷引用:山东省泰安市2021届高三二模数学试题
9 . 为了响应政府号召,增加农民收入,某村委会指导当地村民在果园里进行生态鸡的养殖,在2023年8月初,为了解所养殖的生态鸡的质量(单位;kg)情况,养殖负责人随机抓取了一部分鸡进行称重,得到如下频率分布直方图(同一组中的数据用该组区间的中点值代替),以样本估计总体.
   
(1)求养殖的生态鸡的质量的平均值.
(2)该地现养殖有5000只鸡,为了减轻养殖的压力,养殖负责人计划卖掉一部分鸡,另一部分计划春节再卖掉.若现在卖掉,价格为20元/kg,到春节卖掉,预估价格为22元/kg.现有以下两种方案:
方案一:体重不低于2.5kg的现在卖掉,其余的养殖到春节再卖掉,剩余的鸡平均每只需要10元养殖费用,到春节时,平均质量可以达到2.5kg;
方案二:体重不低于2kg的现在卖掉,其余的养殖到春节再卖掉,剩余的鸡平均每只需要10元养殖费用,到春节时,平均质量可以达到3kg.
从经济收益的角度来看,选择哪种方案更合适?
2023-11-22更新 | 805次组卷 | 6卷引用:2024年普通高等学校招生全国统一考试理科数学领航卷(九)
10 . 某地计划在一处海滩建造一个养殖场.

(1)如图(a)所示,射线为海岸线,,用长度为的围网依托海岸线围成一个的养殖场,问如何选取点PQ,才能使养殖场的面积最大,并求最大面积.
(2)如图(b所示,直线l为海岸线,现用长度为的围网依托海岸线围成一个养殖场.
方案一:围成三角形(点AB在直线l上),使三角形面积最大,设其为
方案二:围成弓形(点DE在直线l上,C是优弧所在圆的圆心且),面积为
试求出的最大值和(均精确到),并指出哪一种设计方案更好.
共计 平均难度:一般