组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 4 道试题
1 . 古希腊几何学家阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点AB的距离为2,动点Р满足,若点Р不在直线AB上,则面积的最大值为(       
A.1B.C.2D.
2 . 古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆为椭圆长轴的端点,为椭圆短轴的端点,分别为椭圆的左右焦点,动点满足面积的最大值为面积的最小值为,则椭圆的离心率为(       
A.B.C.D.
2022-02-25更新 | 2593次组卷 | 8卷引用:湖北省荆州市八县市2021-2022学年高二上学期期末质量检测数学试题
2021高二·江苏·专题练习
3 . 阿波罗尼斯约公元前证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点AB间的距离为2,动点PAB距离之比满足:,当PAB三点不共线时,面积的最大值是(       
A.B.2C.D.
2022-01-04更新 | 1354次组卷 | 9卷引用:江西省六校2021-2022学年高二上学期期末联考数学(文)试题
4 . 阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数()的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,已知的两个顶点是定点,它们的坐标分别为;另一个顶点是动点,且满足,则当的面积最大时,边上的高为___________.
2021-02-04更新 | 1506次组卷 | 3卷引用:四川省巴中中学、南江中学2020-2021学年高二上学期期末联考数学(理)试题
共计 平均难度:一般