组卷网 > 知识点选题 > 双曲线的离心率
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 3 道试题
1 . 公元前6世纪,古希腊的毕达哥拉斯学派把称为黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若黄金双曲线的左、右顶点分别为,虚轴的上端点为B,左焦点为F,离心率为e,则(       
A.a2e=1B.
C.顶点到渐近线的距离为eD.的外接圆的面积为
2 . 公元前 300 年前后, 欧几里得撰写的《几何原本》是最早有关黄金分割的论著, 书中描述: 把一条线段分割为两部分, 使较大部分与全长的比值等于较小部分与较大的比值, 则这个比值即为“黄金分割比”, 把离心率为 “黄金分割比” 倒数的双曲线叫做 “黄金双曲线”. 黄金双曲线 的一个顶点为, 与不在轴同侧的焦点为的一个虚轴端点为为双曲线任意一条不过原点且斜率存在的弦, 中点. 设双曲线的离心率为, 则下列说法中, 正确的有(       
A.B.
C.D.若, 则恒成立
3 . 瑞士著名数学家欧拉在1765年证明了定理“三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半”,后人称这条直线为“欧拉线”.直线轴及双曲线的两条渐近线的三个不同交点构成集合,且恰为某三角形的外心,重心,垂心所成集合.若的斜率为1,则该双曲线的离心率可以是(       
A.B.C.D.
2021-05-05更新 | 1878次组卷 | 6卷引用:福建省三明市普通高中2021届高三毕业班三模数学试题
共计 平均难度:一般