组卷网 > 知识点选题 > 几何概型-面积型
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 2 道试题
1 . “勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽在《周髀算经》中注释了其理论证明,其基本思想是图形经过割补后面积不变.即通过如图所示的“弦图”,将勾股定理表述为:“勾股各自乘,并之,为弦实,开方除之,即弦”(其中分别为勾股弦);证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实”,即,化简得.现已知,向外围大正方形区域内随机地投掷一枚飞镖,飞镖落在中间小正方形内的概率是
A.B.C.D.
2 . 如图,点 的坐标为 ,点 的坐标为 ,函数 ,若在矩形 内随机取一点,则此点取自阴影部分的概率等于___________

2016-12-03更新 | 1595次组卷 | 17卷引用:湖北省天门、仙桃、潜江三市2016-2017学年高二下学期期末考试数学(理)试题
共计 平均难度:一般