组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 114 道试题
1 . 我省某市为吸引游客,推出免费门票项目.该市设置自然风光类、历史文化类、特色体验类三个免费票抽奖机,自然风光类抽中的概率为,历史文化类、特色体验类抽中的概率均为,这三类抽奖之间互不影响.规定凡在该市的景区游玩的游客,每位游客可在每个抽奖机中至多抽奖一次,每次抽奖至多抽中一个免费票景点.
(1)若甲游客在三个抽奖机中各抽奖一次,设X表示甲获得免费票景点个数,求X的分布列和数学期望;
(2)乙游客从这三个抽奖机中随机选取两个抽奖,已知乙抽中(至少抽中一个),求乙在自然风光类、特色体验类抽奖机中抽中的概率.
2024-09-20更新 | 283次组卷 | 1卷引用:广西南宁市2024-2025学年高三上学期普通高中毕业班摸底测试数学试题
2 . 箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过次,以表示取球结束时已取到白球的次数.
(1)求的分布列;
(2)求的数学期望.
2024-09-14更新 | 142次组卷 | 1卷引用:广西柳州高级中学2024-2025学年高三上学期阶段性测试(二)数学试题
3 . 某学校组织游戏活动,规则是学生从盒子中有放回的摸球且每次只能摸取1个球,每次摸球结果相互独立,盒中有1分和2分的球若干,摸到1分球的概率为,摸到2分球的概率为
(1)若学生甲摸球2次,其总得分记为,求随机变量的分布列与期望;
(2)学生甲、乙各摸5次球,最终得分若相同,则都不获得奖励;若不同,则得分多者获得奖励.已知甲前3次摸球得了6分,求乙获得奖励的概率.
4 . 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区植物覆盖面积与某种野生动物数量的关系,将其分成面积相近的若干个地块,从这些地块中随机抽取20个作为样区,调查得到样本数据,其中,和,分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量(单位:只),并计算得.
(1)求样本的相关系数(精确到0.01),并推断这种野生动物的数量y(单位:只)和植物覆盖面积x(单位:公顷)的相关程度;
(2)已知20个样区中有8个样区的这种野生动物数量低于样本平均数,从20个样区中随机抽取2个,记抽到这种野生动物数量低于样本平均数的样区的个数为X,求随机变量X的分布列.
附:相关系数
2024-03-03更新 | 2135次组卷 | 13卷引用:广西南宁市第二中学2023-2024学年高三下学期5月月考数学试题
智能选题,一键自动生成优质试卷~
5 . 某校为了丰富学生课余生活,体育节组织定点投篮比赛.为了解学生喜欢篮球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:

喜欢篮球

不喜欢篮球

合计

男生

40

女生

30

合计

(1)根据所给数据完成上表,依据小概率值独立性检验,能否据此推断该校学生喜欢篮球与性别有关?
(2)篮球指导老师从喜欢篮球的学生中抽取了2名男生和1名女生进行投篮示范.已知这两名男生投进的概率均为,这名女生投进的概率为,每人投篮一次,假设各人投篮相互独立,求3人投进总次数的分布列和数学期望.
附:

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

2024-02-24更新 | 2109次组卷 | 6卷引用:广西壮族自治区南宁市第三中学、柳州高级中学2024届高三下学期一轮复习诊断性联考数学试卷
6 . 随着寒冷冬季的到来,羽绒服进入了销售旺季,某调查机构随机调查了400人,询问他们选购羽绒服时更关注保暖性能还是更关注款式设计,得到以下的列联表:

更关注保暖性能

更关注款式设计

合计

女性

160

80

240

男性

120

40

160

合计

280

120

400

(1)是否有的把握认为男性和女性在选购羽线服时的关注点有差异?
(2)若从这400人中按男女比例用分层抽样的方法抽取5人进行采访,再从这5人中任选2人赠送羽线服,记为抽取的2人中女生的人数,求的分布列和数学期望.
附:

0.10

0.05

0.010

2.706

3.841

6.635

7 . 某调查小组为了解本市不同年龄段的肺炎患者在肺炎确诊两周内的治疗情况,在肺炎患者中随机抽取100人进行调查,并将调查结果整理如下:

两周内治愈两周内未治愈
12岁以上(含12岁)4515
12岁以下2515

(1)试判断是否有的把握认为该市肺炎患者在肺炎确诊两周内治愈与年龄有关;
(2)现从样本中肺炎确诊两周内未治愈的人群中用分层抽样法抽取6人做进一步调查,然后从这6人中随机抽取3人填写调查问卷,记这3人中12岁以下的人数为,求的分布列与数学期望.
附:
0.1500.1000.0500.025
2.0722.7063.8415.024
,其中
2023-12-20更新 | 306次组卷 | 1卷引用:广西三新学术联盟2023-2024学年高三上学期11月联考数学试题
8 . 规定抽球试验规则如下:盒子中初始装有一个白球和两个红球,每次有放回的任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则记该轮为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止:否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功.
(1)某人进行该抽球试验时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量,求的分布列和数学期望;
(2)为验证抽球试验成功的概率不超过,有1500名数学爱好者独立的进行该抽球试验,记表示成功时抽球试验的轮次数,表示对应的人数,部分统计数据如右表:
12345
256100664830
关于的回归方程,并预测成功的总人数(精确到1).
附:经验回归方程系数:
参考数据:(其中).
9 . 某研究机构随机抽取了新近上映的某部影片的120名观众,对他们是否喜欢这部影片进行了调查,得到如下数据(单位:人):

喜欢

不喜欢

合计

男性

40

30

70

女性

35

15

50

合计

75

45

120

根据上述信息,解决下列问题:
(1)根据小概率值的独立性检验,分析观众喜欢该影片与观众的性别是否有关;
(2)从不喜欢该影片的观众中采用分层抽样的方法,随机抽取6人.现从6人中随机抽取2人,若所选2名观众中女性人数为X,求X的分布列及数学期望.
附:,其中.

0.15

0.10

0.05

0.010

0.001

2.072

2.706

3.841

6.635

10.828

2023-07-06更新 | 832次组卷 | 6卷引用:广西南宁市武鸣区武鸣高级中学2024届高三上学期开学调研测试数学试题
10 . 为了促进消费,某商场针对会员客户推出会员积分兑换商品活动:每位会员客户可在价值80元,90元,100元的三种商品中选择一种使用积分进行兑换,每10积分可兑换1元.已知参加活动的甲、乙两位客户各有1000积分,且甲兑换三种商品的概率分别为,乙兑换三种商品的概率分别为,且他们兑换何种商品相互独立.
(1)求甲、乙两人兑换同一种商品的概率;
(2)记为两人兑换商品后的积分总余额,求的分布列与期望
2023-11-23更新 | 1892次组卷 | 10卷引用:广西普通高中2024届高三跨市联合适应性训练检测卷数学试题
共计 平均难度:一般