组卷网 > 知识点选题 > 计算条件概率
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 7 道试题
1 . 某学校食堂每天都会提供AB两种套餐供学生选择(学生只能选择其中的一种),经过统计分析发现:学生第一天选择A套餐的概率为,选择套餐的概率为.而前一天选择了套餐的学生第二天选择套餐的概率为,选择套餐的概率为;前一天选择套餐的学生第二天选择套餐的概率为,选择套餐的概率也是,如此往复.记同学甲第天选择套餐的概率为.
(1)求同学甲第二天选择套餐的概率;
(2)证明:数列为等比数列;
(3)从该校所有学生中随机抽取100名学生统计第二天选择套餐的人数,用表示这100名学生中恰有名学生选择套餐的概率,求取最大值时对应的的值.
7日内更新 | 207次组卷 | 1卷引用:江苏省靖江高级中学2023-2024学年高二下学期5月调研测试数学试题
2 . 甲乙两人参加知识竞赛活动,比赛规则如下:两人轮流随机抽题作答,答对积1分且对方不得分,答错不得分且对方积1分,然后换对方抽题作答,直到有领先2分者晋级,比赛结束.已知甲答对题目的概率为,乙答对题目的概率为P,答对与否相互独立,抽签决定首次答题方,已知两次答题后甲乙两人各积1分的概率为.记甲乙两人的答题总次数为.
(1)求P
(2)当时,求甲得分X的分布列及数学期望;
(3)若答题的总次数为n时,甲晋级的概率为,证明:.
7日内更新 | 110次组卷 | 1卷引用:江苏省海门中学2023-2024学年高二下学期5月学情调研数学试卷
3 . 《中华人民共和国国民经济和社会发展第十四个五年规划和2023年远景目标纲要》指出:要加强原创性、引领性科技攻关,坚决打赢关键核心技术攻坚战.某企业集中科研骨干力量,攻克系列关键技术,已成功实现离子注入机全谱系产品国产化,工艺段覆盖至,为我国芯片制造产业链补上重要一环.该企业使用新技术对某款芯片制造工艺进行改进.
(1)该款芯片生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在改进生产工艺前,前三道工序的次品率分别为.
①求改进生产工艺前,该款芯片的次品率
②在第四道工序中,部分芯片由智能检测系统进行筛选,其中部分次品芯片会被淘汰,筛选后的芯片及未经筛选的芯片进入流水线由工人进行抽样检验.记表示事件“某芯片经过智能检测系统筛选”,表示事件“某芯片经人工抽检后合格”,求证:
(2)改进生产工艺后,该款芯片的某项质量指标服从正态分布,现从中随机抽取个,这个芯片中恰有个的质量指标位于区间.
①若,以使得的最大值作为的估计值,求
②记这个芯片的质量指标的标准差为,其中个芯片的质量指标的平均数为,标准差为,剩余芯片的质量指标的平均数为,标准差为,试写出的计算式.
参考数据:.
2023-11-06更新 | 774次组卷 | 2卷引用:期末押题卷01(考试范围:苏教版2019选择性必修第二册)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
4 . 一个袋子中有10个大小相同的球,其中红球7个,黑球3个.每次从袋中随机摸出1个球,摸出的球不再放回.
(1)求第2次摸到红球的概率;
(2)设第次都摸到红球的概率为;第1次摸到红球的概率为;在第1次摸到红球的条件下,第2次摸到红球的概率为;在第1,2次都摸到红球的条件下,第3次摸到红球的概率为.求
(3)对于事件,当时,写出的等量关系式,并加以证明.
2024-01-18更新 | 3688次组卷 | 9卷引用:第8章 概率 章末题型归纳总结-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
智能选题,一键自动生成优质试卷~
5 . (1)对于任意两个事件,若,证明:
(2)贝叶斯公式是由英国数学家贝叶斯发现的,它用来描述两个条件概率之间的关系.该公式为:设,…,是一组两两互斥的事件,,且,2,…,,则对任意的事件,有,2,…,.
(i)已知某地区烟民的肺癌发病率为1%,先用低剂量进行肺癌筛查,医学研究表明,化验结果是存在错误的.已知患有肺癌的人其化验结果99%呈阳性(有病),而没有患肺癌的人其化验结果99%呈阴性(无病),现某烟民的检验结果为阳性,请问他真的患肺癌的概率是多少?
(ii)为了确保诊断无误,一般对第一次检查呈阳性的烟民进行复诊.复诊时,此人患肺癌的概率就不再是1%,这是因为第一次检查呈阳性,所以对其患肺癌的概率进行修正,因此将用贝叶斯公式求出来的概率作为修正概率,请问如果该烟民第二次检查还是呈阳性,则他真的患肺癌的概率是多少?
2023-04-10更新 | 2316次组卷 | 5卷引用:8.1 条件概率(七大题型)-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)

6 . 2022年11月20日,卡塔尔足球世界杯正式开幕,世界杯上的中国元素随处可见.从体育场建设到电力保障,从赛场内的裁判到赛场外的吉祥物都是中国制造,为卡塔尔世界杯提供了强有力的支持.国内也再次掀起足球热潮.某地足球协会组建球队参加业余比赛,该足球队教练组为了考查球员甲对球队的贡献,作出如下数据统计(甲参加过的比赛均分出了输赢):

球队输球

球队赢球

总计

甲参加

2

30

32

甲未参加

8

10

18

总计

10

40

50


(1)根据小概率值的独立性检验,能否认为该球队赢球与甲球员参赛有关联;
(2)从该球队中任选一人,A表示事件“选中的球员参赛”,B表示事件“球队输球”.的比值是选中的球员参赛对球队贡献程度的一项度量指标,记该指标为R

①证明:

②利用球员甲数据统计,给出的估计值,并求出R的估计值.

附:

参考数据:

a

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

2023-04-06更新 | 3341次组卷 | 14卷引用:第9章 统计 章末题型归纳总结-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
解答题-问答题 | 适中(0.65) |
7 . 从有3个红球和3个蓝球的袋中,每次随机摸出1个球,摸出的球不再放回,记表示事件“第次摸到红球”,,2,…,6.
(1)求第一次摸到蓝球的条件下第二次摸到红球的概率;
(2)记表示同时发生的概率,表示已知都发生时发生的概率.
(ⅰ)证明:
(ⅱ)求.
2023-01-12更新 | 946次组卷 | 5卷引用:8.1 条件概率(含8.1.1-8.1.3)(练习)-2022-2023学年高二数学同步精品课堂(苏教版2019选择性必修第二册)
共计 平均难度:一般