组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 3 道试题
1 . 刷脸时代来了,人们为“刷脸支付”给生活带来的便捷感到高兴,但“刷脸支付”的安全性也引起了人们的担忧.某调查机构为了解人们对“刷脸支付”的接受程度,通过安全感问卷进行调查(问卷得分在分之间),并从参与者中随机抽取人.根据调查结果绘制出如图所示的频率分布直方图.

(1)据此估计这人满意度的平均数同一组中的数据用该组区间的中点值作代表
(2)某大型超市引入“刷脸支付”后,在推广“刷脸支付”期间,推出两种付款方案:方案一:不采用“刷脸支付”,无任何优惠,但可参加超市的抽奖返现金活动.活动方案为:从装有个形状、大小完全相同的小球其中红球个,黑球的抽奖盒中,一次性摸出个球,若摸到个红球,返消费金额的;若摸到个红球,返消费金额的,除此之外不返现金.
方案二:采用“刷脸支付”,此时对购物的顾客随机优惠,但不参加超市的抽奖返现金活动,根据统计结果得知,使用“刷脸支付”时有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.现小张在该超市购买了总价为元的商品.
①求小张选择方案一付款时实际付款额的分布列与数学期望;
②试从期望角度,比较小张选择方案一与方案二付款,哪个方案更划算?(注:结果精确到
2024-04-30更新 | 1878次组卷 | 7卷引用:专题05 离散型随机变量的分布列常考点(8类题型)-备战2023-2024学年高二数学下学期期末真题分类汇编(江苏专用)
2 . 某学校号召学生参加“每天锻炼1小时”活动,为了解学生参加活动的情况,统计了全校所有学生在假期每周锻炼的时间,现随机抽取了60名同学在某一周参加锻炼的数据,整理如下列联表:

性别

不经常锻炼

经常锻炼

合计

男生

7

女生

16

30

合计

21

注:将一周参加锻炼时间不小于3小时的称为“经常锻炼”,其余的称为“不经常锻炼”.
(1)请完成上面列联表,并依据小概率值的独立性检验,能否认为性别因素与学生锻炼的经常性有关系;
(2)将一周参加锻炼为0小时的称为“极度缺乏锻炼”.在抽取的60名同学中有5人“极度缺乏锻炼”.以样本频率估计概率.若在全校抽取20名同学,设“极度缺乏锻炼”的人数为X,求X的数学期望和方差
(3)将一周参加锻炼6小时以上的同学称为“运动爱好者”.在抽取的60名同学中有10名“运动爱好者”,其中有7名男生,3名女生.为进一步了解他们的生活习惯,在10名“运动爱好者”中,随机抽取3人进行访谈,设抽取的3人中男生人数为Y,求Y的分布列和数学期望.
附:

0.1

0.05

0.01

2.706

3.841

6.635

3 . 某工厂引进新的生产设备,为对其进行评估,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径/mm5859616263646566676869707173合计
件数11356193318442121100
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(1)为评估设备对原材料的利用情况,需要研究零件中某材料含量和原料中的该材料含量之间的相关关系,现取了8对观测值,求的线性回归方程.
(2)为评判设备生产零件的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率);
;②;③.
评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.
(3)将直径小于等于或直径大于的零件认为是次品.从样本中随意抽取2件零件,再从设备的生产流水线上随意抽取2件零件,计算其中次品总数的数学期望.
附:①对于一组数据,其回归直线的斜率和截距的最小二乘法估计公式分别为
②参考数据:.
2023-12-22更新 | 1681次组卷 | 8卷引用:第9章 统计 章末题型归纳总结-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
共计 平均难度:一般