组卷网 > 知识点选题 > 正态曲线
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 12 道试题
1 . 下列命题中真命题是(       
A.设一组数据的平均数为,方差为,则
B.已知随机变量,若,则
C.两个变量的相关系数越大,它们的相关程度越强
D.若随机变量服从正态分布,且,则
2023-08-24更新 | 271次组卷 | 1卷引用:江苏省苏州市昆山中学2022-2023学年高一(实验班)下学期期末数学试题
2 . 已知随机变量,随机变量,若,则       
A.0.1B.0.2C.0.3D.0.4
2023-06-14更新 | 608次组卷 | 5卷引用:江西省宜春市丰城市第九中学(日新班)2022-2023学年高一下学期期末考试数学试题
3 . 下列说法正确的是(       
A.设随机变量服从二项分布,则
B.已知随机变量服从正态分布,且,则
C.甲、乙、丙三人均准备在3个旅游景点中任选一处去游玩,则在至少有1个景点未被选择的条件下,恰有2个景点未被选择的概率是
D.
智能选题,一键自动生成优质试卷~
2021高三·全国·专题练习
5 . 某市教育科学研究院为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三联考理综试卷的得分情况进行了调研.从全市参加考试的考生中随机抽取了100名考生的理综成绩,将数据分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300].并整理得到如图所示的频率分布直方图.

(1)根据频率分布直方图,求直方图中x的值;
(2)用频率估计概率,从该市所有高三考生的理综成绩中随机抽取3个,记理综成绩位于区间[220,260)内的个数为y,求y的分布列及数学期望Ey);
(3)若变量S满足PμσSμ+σ)≈0.6827,且Pμ﹣2σSμ+2 σ)≈0.9545,则称S近似服从正态分布Nμσ2),若该市高三考生的理综成绩近似服从正态分布N(225,225),则给予这套试卷好评,否则差评,试问:这套试卷得到好评还是差评?
2021-03-16更新 | 1635次组卷 | 7卷引用:第14章 统计(能力提升)-2020-2021学年高一数学单元测试定心卷(苏教版2019必修第二册)
6 . 2020年初,新型冠状病毒(2019-nCoV)肆虐,全民开启防疫防控.新型冠状病毒的传染主要是人与人之间进行传播,感染人群年龄大多数是40岁以上人群.该病毒进入人体后有潜伏期,潜伏期是指病原体侵入人体至最早出现临床症状的这段时间.潜伏期越长,感染到他人的可能性越高,现对200个病例的潜伏期(单位:天)进行调查,统计发现潜伏期平均数为7.1,方差为.如果认为超过8天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的列联表:

年龄/人数

长期潜伏

非长期潜伏

40岁以上

30

110

40岁及40岁以下

20

40


(1)是否有95%的把握认为“长期潜伏”与年龄有关;
(2)假设潜伏期X服从正态分布,其中近似为样本平均数近似为样本方差
(ⅰ)现在很多省份对入境旅客一律要求隔离14天,请用概率的知识解释其合理性;
(ⅱ)以题目中的样本频率估计概率,设1000个病例中恰有个属于“长期潜伏”的概率是,当k为何值时,取得最大值.
附:

0.1

0.05

0.010

2.706

3.841

6.635


7 . 已知某种零件的尺寸ξ(单位:mm)服从正态分布,其正态曲线在(0,80)上是增函数,在上是减函数,且.
(1)求概率密度函数;
(2)估计尺寸在72mm~88mm间的零件大约占总数的百分之几?
2017-11-27更新 | 611次组卷 | 7卷引用:高中数学人教版 选修2-3(理科) 第二章 随机变量及其分布 2.4正态分布
8 . 某县农民年均收入服从μ=500元,σ=20元的正态分布,求:
(1)此县农民的年均收入在500~520元之间的人数的百分比;
(2)此县农民的年均收入超过540元的人数的百分比.
2017-11-27更新 | 551次组卷 | 2卷引用:高中数学人教版 选修2-3(理科) 第二章 随机变量及其分布 2.4正态分布
9 . 已知一次考试共有60名同学参加,考生的成绩,据此估计,大约应有57人的分数在下列哪个区间内(       
A.(90,110]B.(95,125]
C.(100,120]D.(105,115]
2017-11-27更新 | 873次组卷 | 3卷引用:高中数学人教版 选修2-3(理科) 第二章 随机变量及其分布 2.4正态分布
10 . 某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为
A.B.C.D.
2016-12-03更新 | 145次组卷 | 1卷引用:2014年苏教版必修三 3.4互斥事件练习卷
共计 平均难度:一般