组卷网 > 章节选题 > 2.3 数学归纳法
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 2 道试题
1 . 已知①设函数的值域是,对于中的每个,若函数在每一处都等于它对应的,这样的函数叫做函数的反函数,记作,我们习惯记自变量为,因此可改成即为原函数的反函数.易知互为反函数,且.如的反函数是可改写成即为的反函数,互为反函数.②是定义在且取值于的一个函数,定义,则称是函数上的次迭代.例如,则.对于一些相对复杂的函数,为求出其次迭代函数,我们引入如下一种关系:对于给定的函数,若函数的反函数存在,且有,称关于相似,记作,其中称为桥函数,桥函数满足以下性质:
(i)若,则
(ii)若的一个不动点,即,则的一个不动点.
(1)若函数,求(写出结果即可)
(2)证明:若,则
(3)若函数,求(桥函数可选取),若,试选取恰当桥函数,计算
2024-06-14更新 | 65次组卷 | 1卷引用:浙江省金华市卓越联盟2023-2024学年高二下学期5月阶段联考数学试题
解答题-证明题 | 较难(0.4) |
2 . 一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当时命题成立;
(2)(归纳递推)以“当时命题成立”为条件,推出“当时命题也成立”.
只要完成这两个步骤,就可以断定命题对从开始的所有正整数n都成立,这种证明方法称为数学归纳法.
已知集合A为有理数集Q的一个子集,且满足以下条件:

②对任意的,存在唯一的,满足,其中表示不超过y的最大整数;
③若,则.
证明:
(1)
(2)对任意的,对每一个整数,都有
(3).
2024-05-18更新 | 141次组卷 | 1卷引用:湘豫名校联考2023-2024学年高三下学期第三次模拟考试数学试题
共计 平均难度:一般