名校
1 . 设集合.
(1)求证:所有奇数均属于集合A
(2)用反证法证明:10不是集合的元素.
(1)求证:所有奇数均属于集合A
(2)用反证法证明:10不是集合的元素.
您最近一年使用:0次
2 . 如图,在中,,为边上的一点,以为直径的交于点,过点作交于点,交于点,过点作交于点,.
(2)连接,试猜想四边形的形状,并加以证明;
(3)若,求四边形的面积.
(1)求证:是的切线;
(2)连接,试猜想四边形的形状,并加以证明;
(3)若,求四边形的面积.
您最近一年使用:0次
3 . 下面图片是八年级教科书中的一道题:如图,四边形是正方形,点是边的中点,,且交正方形外角的平分线于点.求证.(提示:取的中点,连接).(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:_______.
(2)如图1,若点是边上任意一点(不与重合),其他条件不变.求证:;
(3)在(2)的条件下,连接,过点作,垂足为.设,当为何值时,四边形是平行四边形,并给予证明,
(2)如图1,若点是边上任意一点(不与重合),其他条件不变.求证:;
(3)在(2)的条件下,连接,过点作,垂足为.设,当为何值时,四边形是平行四边形,并给予证明,
您最近一年使用:0次
名校
4 . 如图,是矩形的对角线,的平分线交于点.
(1)用尺规完成以下基本作图:作的平分线交于点;连接;(不写作法和证明,保留作图痕迹)
(2)在(1)所作的图形中,求证:四边形是平行四边形.(请补全下面的证明过程,除题目给的字母外,不添加其它字母或者符号)
证明:四边形是矩形,,①_____.
,
平分平分,
,,
四边形是矩形,.
②_____.
.
,③_____.
④_____.
四边形是平行四边形,
(1)用尺规完成以下基本作图:作的平分线交于点;连接;(不写作法和证明,保留作图痕迹)
(2)在(1)所作的图形中,求证:四边形是平行四边形.(请补全下面的证明过程,除题目给的字母外,不添加其它字母或者符号)
证明:四边形是矩形,,①_____.
,
平分平分,
,,
四边形是矩形,.
②_____.
.
,③_____.
④_____.
四边形是平行四边形,
您最近一年使用:0次
名校
5 . 小南在学习矩形的判定之后,想继续研究判定一个平行四边形是矩形的方法,他的想法是作平行四边形两相邻内角的角平分线,与两内角公共边的对边相交,如果这相邻内角的顶点到对应交点的距离相等,则可论证该平行四边形是矩形.
(1)用直尺和圆规,作射线平分交于点;
(2)已知:如图,在平行四边形中,平分交于点平分交于点,且.求证:平行四边形是矩形.
四边形为平行四边形,
__________①,
,
__________②,
,
,
在和中
__________③.
平行四边形是矩形.
小南再进一步研究发现,若这组邻角的角平分线与公共边的对边延长线相交,结论仍然成立.因此,小南得出结论:作平行四边形两相邻内角的角平分线,与两内角公共边的对边(或对边延长线)相交,若这相邻内角的顶点到对应交点的距离相等,则_ _________④.
(1)用直尺和圆规,作射线平分交于点;
(2)已知:如图,在平行四边形中,平分交于点平分交于点,且.求证:平行四边形是矩形.
证明:分别平分,
四边形为平行四边形,
__________①,
,
__________②,
,
,
在和中
__________③.
平行四边形是矩形.
小南再进一步研究发现,若这组邻角的角平分线与公共边的对边延长线相交,结论仍然成立.因此,小南得出结论:作平行四边形两相邻内角的角平分线,与两内角公共边的对边(或对边延长线)相交,若这相邻内角的顶点到对应交点的距离相等,则_ _________④.
您最近一年使用:0次
6 . 已知:关于x的方程.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数的图象关于y轴对称;
①求二次函数的解析式;
②已知一次函数,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值均成立.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数的图象关于y轴对称;
①求二次函数的解析式;
②已知一次函数,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值均成立.
您最近一年使用:0次
7 . 已知:如图,等腰三角形中,,,直线经过点(点、都在直线的同侧),,,垂足分别为、.
(1)求证:;
(2)请判断、、三条线段之间有怎样的数量关系,并证明.
(1)求证:;
(2)请判断、、三条线段之间有怎样的数量关系,并证明.
您最近一年使用:0次
名校
解题方法
8 . 如图,在三棱柱中,若G,H分别是线段AC,DF的中点.(1)求证:;
(2)在线段CD上是否存在一点,使得平面平面BCF,若存在,指出的具体位置并证明;若不存在,说明理由.
(2)在线段CD上是否存在一点,使得平面平面BCF,若存在,指出的具体位置并证明;若不存在,说明理由.
您最近一年使用:0次
2023-04-13更新
|
3311次组卷
|
11卷引用:浙江省宁波市三锋教研联盟2022-2023学年高一下学期期中联考数学试题
浙江省宁波市三锋教研联盟2022-2023学年高一下学期期中联考数学试题(已下线)立体几何专题:立体几何探索性问题的8种考法(已下线)13.2.4 平面与平面的位置关系 (1)河北定州中学2022-2023学年高一下学期5月月考数学试题江西省宜春市第十中学2024届高二上学期开学检测数学试题新疆阿克苏市实验中学2022-2023学年高一下学期第三次月考数学试题(已下线)8.5.3 平面与平面平行【第三练】“上好三节课,做好三套题“高中数学素养晋级之路(已下线)11.3.3平面与平面平行-同步精品课堂(人教B版2019必修第四册)(已下线)专题突破:空间几何体的动点探究问题-同步题型分类归纳讲与练(人教A版2019必修第二册)【课后练】第4.4节综合训练 课后作业-湘教版(2019)必修(第二册) 第4章 立体几何初步(已下线)第四节直线、平面平行的判定与性质【同步课时】基础卷
9 . 下图是小明复习全等三角形时遇到的一个问题并引发的思考,请帮助小明完成以下学习任务.
如图,OC平分,点P在OC上,M、N分别是、OB上的点,,求证:.
小明的思考:要证明,只需证明即可.
证法:如图①:∵OC平分,∴,
又∵,,∴,
∴;
请仔细阅读并完成以下任务:(1)小明得出的依据是______(填序号).
①SSS ②SAS ③AAS ④ASA ⑤HL
(2)如图②,在四边形ABCD中,,的平分线和的平分线交于CD边上点P,求证:.
(3)在(2)的条件下,如图③,若,,当△PBC有一个内角是45°时,的面积是______.
如图,OC平分,点P在OC上,M、N分别是、OB上的点,,求证:.
小明的思考:要证明,只需证明即可.
证法:如图①:∵OC平分,∴,
又∵,,∴,
∴;
请仔细阅读并完成以下任务:(1)小明得出的依据是______(填序号).
①SSS ②SAS ③AAS ④ASA ⑤HL
(2)如图②,在四边形ABCD中,,的平分线和的平分线交于CD边上点P,求证:.
(3)在(2)的条件下,如图③,若,,当△PBC有一个内角是45°时,的面积是______.
您最近一年使用:0次
10 . 请阅读下列材料,并完成相应的任务.
战国时的《墨经》就有“圆,一中同长也”的记载.与圆有关的定理有很多,弦切角定理就是其中之一.我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.弦切角定理:弦切角的度数等于它所夹的弧所对的圆周角度数.
下面是弦切角定理的部分证明过程:
证明:①如图1,AB与相切于点A.当圆心O在弦AC上时,容易得到,所以弦切角.
②如图2,AB与相切于点A.当圆心O在的外部时,过点A作直径AF交于点F,连接FC.
∵AF是直径,∴,∴.
∵AB与相切于点A,∴,∴,∴.
(1)如图3,AB与相切于点A,当圆心O在的内部时,过点A作直径AD交于点D,在上任取一点E,连接EC,ED,EA,求证:;
(2)如图3,已知的半径为1,弦切角,求的长.
战国时的《墨经》就有“圆,一中同长也”的记载.与圆有关的定理有很多,弦切角定理就是其中之一.我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.弦切角定理:弦切角的度数等于它所夹的弧所对的圆周角度数.
下面是弦切角定理的部分证明过程:
证明:①如图1,AB与相切于点A.当圆心O在弦AC上时,容易得到,所以弦切角.
②如图2,AB与相切于点A.当圆心O在的外部时,过点A作直径AF交于点F,连接FC.
∵AF是直径,∴,∴.
∵AB与相切于点A,∴,∴,∴.
(1)如图3,AB与相切于点A,当圆心O在的内部时,过点A作直径AD交于点D,在上任取一点E,连接EC,ED,EA,求证:;
(2)如图3,已知的半径为1,弦切角,求的长.
您最近一年使用:0次