组卷网 > 知识点选题 > 知识点选题怎么用?
更多: 只看新题 精选材料新、考法新、题型新的试题
共计 7 道试题
解答题-证明题 | 较难(0.4) |
名校
1 . 定理(三角不等式),对于任意的,恒有.定义:已知,对于有序数组,称为有序数组的波动距离,记作,即,请根据上述俼息解决以下几个问题:
(1)求函数的最小值,并指出函数取到最小值时的取值范围;
(2)①求有序数组的波动距离
②求证:若,则;题(注:该命题无需证明,需要时可直接使用).设两两不相等的四个实数,求有序数组的波动距离的最大值.
2022/08/22 | 559次组卷 | 7卷引用:上海市控江中学2021-2022学年高一上学期期中数学试题
2 . 已知任意二次曲线S是曲线S的弦,O的中点,过点O任意作弦,过点CDEF另作一条任意二次曲线t,如果曲线t与直线交于点PQ,求证:.
2021/09/25 | 154次组卷 | 1卷引用:高中数学解题兵法 第七十九讲 曲线簇法
3 . 已知,数列满足
(1)已知数列极限存在且大于零,求(将Aa表示);
(2)设,证明:
(3)若都成立,求a的取值范围.
2022/11/09 | 409次组卷 | 1卷引用:2004 年普通高等学校招生考试数学(理)试题(湖北卷)
4 . 设动点在直线上的射影分别为点,已知,其中为坐标原点.
(1)求动点的轨迹的方程;
(2)过直线上的一点作轨迹的两条切线(为切点),求证:直线经过定点.
2021/07/03 | 780次组卷 | 5卷引用:全国2021届高三高考数学(文)信息试题(一)
5 . 已知椭圆的焦距为2,O为坐标原点,F为右焦点,点在椭圆上.

(1)求椭圆的标准方程;
(2)若直线l的方程为AB是椭圆上与坐标轴不平行的一条弦,M为弦的中点,直线MOl于点P,过点OAB平行的直线交/于点Q,直线PF交直线OQ于点R,直线QF交直线MO于点S
①证明:OSFR四点共圆;
②记QRF的面积为QSO的面积为,求的取值范围.
2021/11/13 | 1470次组卷 | 4卷引用:浙江省温州市环大罗山联盟2021-2022学年高二上学期期中联考数学试题
6 . 已知椭圆=1上有两点P(﹣2,1)及Q(2,﹣1),直线lykx+b与椭圆交于AB两点,与线段PQ交于点C(异于PQ).
(1)当k=1且时,求直线l的方程;
(2)当k=2时,求四边形PAQB面积的取值范围;
(3)记直线PAPBQAQB的斜率依次为k1k2k3k4.当b≠0且线段AB的中点M在直线y=﹣x上时,计算k1k2的值,并证明:k12+k22>2k3k4
2021/05/11 | 401次组卷 | 1卷引用:上海市徐汇区2021届高三二模数学试题
7 . 如图,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.已知椭圆的左、右焦点分别为,左、右顶点分别为,一光线从点射出经椭圆点反射,法线(与椭圆处的切线垂直的直线)与轴交于点,已知.

(1)求椭圆的方程.
(2)过的直线与椭圆交于两点(均不与重合),直线与直线交于点,证明:三点共线.
试题加载中…