1 . 如图,河对岸有两棵树A、B,由于缺少渡河工具,无法过河直接测得A、B之间的距离.假定可测得从本岸上的任意一点出发的两条射线之间的夹角,以及本岸上任意两点之间的距离,请你利用解斜三角形的方法,设计测量距离的方案,并给出具体的计算方法.
您最近一年使用:0次
名校
解题方法
2 . 某市遇到洪涝灾害.在该市的某湖泊的岸边的O点处(湖岸可视为直线)停放着一艘搜救小船,由于缆绳突然断开,小船被风刮跑(假设小船沿直线匀速漂移).(1)为了找回小船,需要测量小船的漂移速度(请使用km/h作为单位,精确到0.1km/h).
现有两种方案:
①如图1,在湖岸设置一个观察点A,A点距离O点20m.当小船在漂移到B处时,测得;经过15s,小船漂移到C处,测得.又在O点处测量得小船的漂移方向与河岸成30°.请根据以上数据,计算小船的漂移速度.
②如图2,在岸边设置两个观察点A,B,且A,B之间的直线距离为20m,当小船在C处时,测得和;经过20s,小船漂移到D处,测得和.请根据以上数据,计算小船的漂移速度.
(2)如图3,若小船从点O开始漂移的同时,在O点处的一名安全员沿河岸以4km/h开始追赶小船,在此过程中获知小船的漂移方向与河岸成30°,漂移的速度为2.2km/h,于是安全员在河岸上选择合适的地点A下水,以2km/h的速度游泳沿直线追赶小船.问安全员是否能追上小船?请说明理由.
参考数据:,,,.
现有两种方案:
①如图1,在湖岸设置一个观察点A,A点距离O点20m.当小船在漂移到B处时,测得;经过15s,小船漂移到C处,测得.又在O点处测量得小船的漂移方向与河岸成30°.请根据以上数据,计算小船的漂移速度.
②如图2,在岸边设置两个观察点A,B,且A,B之间的直线距离为20m,当小船在C处时,测得和;经过20s,小船漂移到D处,测得和.请根据以上数据,计算小船的漂移速度.
(2)如图3,若小船从点O开始漂移的同时,在O点处的一名安全员沿河岸以4km/h开始追赶小船,在此过程中获知小船的漂移方向与河岸成30°,漂移的速度为2.2km/h,于是安全员在河岸上选择合适的地点A下水,以2km/h的速度游泳沿直线追赶小船.问安全员是否能追上小船?请说明理由.
参考数据:,,,.
您最近一年使用:0次
3 . 如图,已知两个路灯之间的距离是,为了测量点与河对岸(不可到达)点之间的距离,先后测得和的大小.(1)若,求两点之间的距离;
(2)假设你只携带量角器(可以测量以你为顶点的角的大小).请你设计一个可以计算出 河对岸两点之间距离的方案,包括:
①指出要测量的数据并标示在图中;
②用文字和公式写出计算之间距离的步骤.
(2)假设你只携带量角器(可以测量以你为顶点的角的大小).请你设计一个可以计算出 河对岸两点之间距离的方案,包括:
①指出要测量的数据并标示在图中;
②用文字和公式写出计算之间距离的步骤.
您最近一年使用:0次
解题方法
4 . 某街道规划建一座口袋公园.如图所示,公园由扇形区域和三角形区域组成.其中三点共线,扇形半径为30米.规划口袋公园建成后,扇形区域将作为花草展示区,三角形区域作为亲水平台区,两个区域的所有边界修建休闲步道.(1)若,,求休闲步道总长(精确到米);
(2)若,在前期民意调查时发现,绝大部分街道居民对亲水平台区更感兴趣.请你根据民意调查情况,从该区域面积最大或周长最长的视角出发,选择其中一个方案,设计三角形的形状.
(2)若,在前期民意调查时发现,绝大部分街道居民对亲水平台区更感兴趣.请你根据民意调查情况,从该区域面积最大或周长最长的视角出发,选择其中一个方案,设计三角形的形状.
您最近一年使用:0次
5 . 10世纪波斯著名数学家、天文学家阿尔·库希设计出一种方案,通过两个观测者异地同时观察同一颗流星,来测定其发射点的高度,如图,假设地球是一个标准的球体,为地球的球心,弧为地线,有两个观测者在地球上的两地同时观测到一颗流星,观测的仰角分别为,其中,为了方便计算,我们考虑一种理想状态,假设两个观测者在地球上的两点测得,地球半径为千米,两个观测者的距离弧千米.(参考数据:)(1)求流星发射点的近似高度.
(2)在古希腊时代,科学不发达,人们看到流星以为这是地球水分蒸发后凝结的固体.已知对流层(地球大气层靠近地面的一层)高度大约在18千米左右,若地球半径千米,请你据此判断该流星是地球蒸发物还是“天外来客”,并说明理由.
(2)在古希腊时代,科学不发达,人们看到流星以为这是地球水分蒸发后凝结的固体.已知对流层(地球大气层靠近地面的一层)高度大约在18千米左右,若地球半径千米,请你据此判断该流星是地球蒸发物还是“天外来客”,并说明理由.
您最近一年使用:0次
名校
解题方法
6 . 在中,分别为内角所对的边,且满足.
(1)求角的大小;
(2)试从条件①②③中选出两个作为已知,使得存在且唯一,并以此为依据求的面积.(注:只需写出一个选定方案即可)
条件①:;条件②:;条件③:.
(1)求角的大小;
(2)试从条件①②③中选出两个作为已知,使得存在且唯一,并以此为依据求的面积.(注:只需写出一个选定方案即可)
条件①:;条件②:;条件③:.
您最近一年使用:0次
7 . 如图,某人位于临河的公路上,已知公路两个相邻路灯、之间的距离是,为了测量点与河对岸一点之间的距离,此人先后测得,.
(2)假设你只携带着量角器(可以测量以你为顶点的角的大小).请你设计一个通过测量角可以计算出河对岸两点、之间距离的方案,用字母表示所测量的角的大小,并用其表示出的长.
(1)求、两点之间的距离;
(2)假设你只携带着量角器(可以测量以你为顶点的角的大小).请你设计一个通过测量角可以计算出河对岸两点、之间距离的方案,用字母表示所测量的角的大小,并用其表示出的长.
您最近一年使用:0次
名校
解题方法
8 . 在中,a,b,c分别为内角A,B,C所对的边,且满足.
(1)求角A的大小;
(2)试从条件①②③中选出两个作为已知,使得存在且唯一,写出你的选择___________,并以此为依据求的面积.(注:只需写出一个选定方案即可)
条件①:;条件②:;条件③:.
注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.
(1)求角A的大小;
(2)试从条件①②③中选出两个作为已知,使得存在且唯一,写出你的选择___________,并以此为依据求的面积.(注:只需写出一个选定方案即可)
条件①:;条件②:;条件③:.
注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.
您最近一年使用:0次
2023-05-26更新
|
1186次组卷
|
6卷引用:专题01 条件开放型【练】【北京版】