名校
解题方法
1 . 已知圆锥曲线C的对称中心在原点,以坐标轴为对称轴,且经过点与点.
(1)求曲线C的方程;
(2)已知T为直线上的动点(T不在x轴上),A,B为曲线C与x轴的交点,直线与曲线C相交的另一点为M,直线与曲线C相交的另一点为N,记和的面积分别为,若,求直线的方程.
(1)求曲线C的方程;
(2)已知T为直线上的动点(T不在x轴上),A,B为曲线C与x轴的交点,直线与曲线C相交的另一点为M,直线与曲线C相交的另一点为N,记和的面积分别为,若,求直线的方程.
您最近一年使用:0次
2024-02-23更新
|
575次组卷
|
2卷引用:福建省福州第三中学2023-2024学年高二上学期1月期末数学试题
解题方法
2 . 点在单位圆上运动,点的横坐标为点的横坐标的倍,纵坐标相同.
(1)求点的轨迹的方程;
(2)已知、为曲线与轴的左、右交点,动直线交曲线于、两点(均不与、重合),记直线的斜率为,直线的斜率为,且,试问动直线是否恒过定点?若过,求出该点坐标:若不过,请说明理由.
(1)求点的轨迹的方程;
(2)已知、为曲线与轴的左、右交点,动直线交曲线于、两点(均不与、重合),记直线的斜率为,直线的斜率为,且,试问动直线是否恒过定点?若过,求出该点坐标:若不过,请说明理由.
您最近一年使用:0次
名校
3 . 已知方程,其中.现有四位同学对该方程进行了判断,提出了四个命题:
甲:可以是圆的方程; 乙:可以是抛物线的方程;
丙:可以是椭圆的标准方程; 丁:可以是双曲线的标准方程.
其中,真命题有( )
甲:可以是圆的方程; 乙:可以是抛物线的方程;
丙:可以是椭圆的标准方程; 丁:可以是双曲线的标准方程.
其中,真命题有( )
A.1个 | B.2个 | C.3个 | D.4个 |
您最近一年使用:0次
2023-04-19更新
|
2674次组卷
|
10卷引用:福建省泉州市2023-2024学年高二上学期期末适应性练习数学试题
福建省泉州市2023-2024学年高二上学期期末适应性练习数学试题山东省青岛市第五十八中学2024届高三上学期期末数学试题广东省佛山市2023届高三二模数学试题(已下线)专题01 集合与常用逻辑用语(已下线)专题06 解析几何专题01集合与常用逻辑用语专题17平面解析几何(单选题)(已下线)第05讲 椭圆及其性质(八大题型)(讲义)-1广东省广州市执信中学2024届高三下学期教学情况检测(二)数学试题(已下线)第06讲 双曲线及其性质(十一大题型)(讲义)-1
名校
4 . 已知点,,为圆上的动点,延长至,使得,的垂直平分线与交于点,记的轨迹为.
(1)求的方程;
(2)过的直线与交于两点,纵坐标不为的点在直线上,线段分别与线段,交于两点,且,证明:.
(1)求的方程;
(2)过的直线与交于两点,纵坐标不为的点在直线上,线段分别与线段,交于两点,且,证明:.
您最近一年使用:0次
2022-03-09更新
|
1053次组卷
|
3卷引用:福建省厦门第六中学2023届高三上学期期末数学试题