组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 94 道试题
1 . 已知是椭圆的右焦点,且在椭圆上,垂直于轴.
(1)求椭圆的方程.
(2)过点的直线交椭圆(异于点)两点,为直线上一点.设直线的斜率分别为,若,证明:点的横坐标为定值.
2 . 已知椭圆和直线l,椭圆的离心率,坐标原点到直线的距离为.
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆相交于CD两点,试判断是否存在实数k,使以CD为直径的圆过定点E?若存在,求出k的值,若不存在,说明理由.
2023-02-23更新 | 707次组卷 | 3卷引用:吉林省白城市通榆县第一中学校2022-2023学年高二上学期期末数学试题
3 . 已知椭圆的左右焦点分别为,离心率为,过左焦点的直线与椭圆交于两点(不在轴上),的周长为.
(1)求椭圆的标准方程;
(2)若点在椭圆上,且为坐标原点),求的取值范围.
4 . 已知椭圆过点,且离心率
(1)求椭圆的方程;
(2)若斜率为的直线交椭圆两点,交轴于点,问是否存在实数使得以为直径的圆恒过点?若存在,求的值,若不存在,说出理由.
2023-01-16更新 | 517次组卷 | 1卷引用:吉林省东北师范大学附属中学净月实验学校2022-2023学年高三上学期第二次校内摸底考试数学试题
5 . 如图,在平面直角坐标系,已知分别:的左,右焦点.设点为线段的中点.

(1)若为长轴的三等分点,求椭圆方程;
(2)直线(不与轴重合)过点且与椭圆交于两点,延长与椭圆交于两点,设直线的斜率存在且分别为,请将表示成关于的函数,即,求的值域.
6 . 已知分别是椭圆的左、右焦点,AC的右顶点,P是椭圆C上一点,MN分别为线段的中点,O是坐标原点,四边形OMPN的周长为4.
(1)求椭圆C的标准方程
(2)若不过点A的直线l与椭圆C交于DE两点,且,判断直线l是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.
7 . 已知椭圆过点,且该椭圆长轴长是短轴长的二倍.
(1)求椭圆的方程;
(2)设点关于原点对称的点为,过点且斜率存在的直线交椭圆于点MN,直线MANA分别交直线于点PQ,求证为定值.
8 . 已知椭圆短轴的两个顶点与右焦点的连线构成等边三角形,直线与圆相切.

(1)求椭圆的方程;
(2)过点作两条互相垂直的直线,与椭圆分别交于四点,如图,求四边形的面积的取值范围.
2022-12-03更新 | 1146次组卷 | 7卷引用:吉林省通化梅河口市第五中学2022-2023学年高三上学期期末考试数学试题
9 . 已知椭圆的左顶点为,点在椭圆上,且.
(1)求椭圆的标准方程.
(2)设过点的直线与椭圆交于(异于两点)两点,直线分别与轴交于三点.证明:是线段的中点.
10 . 已知椭圆C的左、右顶点分别为AB,上顶点M与左右顶点连线MAMB的斜率乘积为,焦距为4.
(1)求椭圆C的方程;
(2)设点P为椭圆上异于AB的点,直线APy轴的交点为Q,过坐标原点O交椭圆于N点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.
共计 平均难度:一般