名校
解题方法
1 . 已知是椭圆的右焦点,且在椭圆上,垂直于轴.
(1)求椭圆的方程.
(2)过点的直线交椭圆于(异于点)两点,为直线上一点.设直线的斜率分别为,若,证明:点的横坐标为定值.
(1)求椭圆的方程.
(2)过点的直线交椭圆于(异于点)两点,为直线上一点.设直线的斜率分别为,若,证明:点的横坐标为定值.
您最近一年使用:0次
2023-03-11更新
|
2267次组卷
|
13卷引用:吉林省白山市2023届高三三模联考数学试题
吉林省白山市2023届高三三模联考数学试题湖南省部分市2023届高三下学期3月大联考数学试题河南省焦作市2022-2023学年高三第二次模拟考试数学(理科)试题贵州省黔东南州2023届高三第一次适应性考试数学(文)试题贵州省黔东南州2023届高三第一次适应性考试数学(理)试题陕西省咸阳市高新一中2023届高三下学期第八次质量检测理科数学试题陕西省咸阳市高新一中2023届高三下学期第八次质量检测文科数学试题河南省焦作市2022-2023学年高三第二次模拟考试数学(文科)试题(已下线)专题16解析几何(解答题)(已下线)专题15解析几何(解答题)河北省保定市安国中学等3校2023届高三下学期3月月考数学试题辽宁省锦州市黑山县黑山中学2023届高三一模数学试题云南省曲靖市第一中学2024届高三上学期第四次月考数学试卷
解题方法
2 . 已知椭圆和直线l:,椭圆的离心率,坐标原点到直线的距离为.
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆相交于C,D两点,试判断是否存在实数k,使以CD为直径的圆过定点E?若存在,求出k的值,若不存在,说明理由.
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆相交于C,D两点,试判断是否存在实数k,使以CD为直径的圆过定点E?若存在,求出k的值,若不存在,说明理由.
您最近一年使用:0次
2023-02-23更新
|
707次组卷
|
3卷引用:吉林省白城市通榆县第一中学校2022-2023学年高二上学期期末数学试题
吉林省白城市通榆县第一中学校2022-2023学年高二上学期期末数学试题浙江省杭州市六县九校联盟2023-2024学年高二上学期11月期中联考数学试题(已下线)专题7-4圆锥曲线五个方程型大题归类-2
名校
解题方法
3 . 已知椭圆的左、右焦点分别为,离心率为,过左焦点的直线与椭圆交于两点(不在轴上),的周长为.
(1)求椭圆的标准方程;
(2)若点在椭圆上,且为坐标原点),求的取值范围.
(1)求椭圆的标准方程;
(2)若点在椭圆上,且为坐标原点),求的取值范围.
您最近一年使用:0次
2023-02-14更新
|
754次组卷
|
7卷引用:吉林省白城市通榆县2022-2023学年高二上学期期末数学试题
名校
解题方法
4 . 已知椭圆过点,且离心率.
(1)求椭圆的方程;
(2)若斜率为的直线交椭圆于、两点,交轴于点,问是否存在实数使得以为直径的圆恒过点?若存在,求的值,若不存在,说出理由.
(1)求椭圆的方程;
(2)若斜率为的直线交椭圆于、两点,交轴于点,问是否存在实数使得以为直径的圆恒过点?若存在,求的值,若不存在,说出理由.
您最近一年使用:0次
名校
解题方法
5 . 如图,在平面直角坐标系,已知,分别:的左,右焦点.设点为线段的中点.
(1)若为长轴的三等分点,求椭圆方程;
(2)直线(不与轴重合)过点且与椭圆交于,两点,延长,与椭圆交于,两点,设直线,的斜率存在且分别为,,请将表示成关于的函数,即,求的值域.
(1)若为长轴的三等分点,求椭圆方程;
(2)直线(不与轴重合)过点且与椭圆交于,两点,延长,与椭圆交于,两点,设直线,的斜率存在且分别为,,请将表示成关于的函数,即,求的值域.
您最近一年使用:0次
2023-01-15更新
|
562次组卷
|
2卷引用:吉林省通化市梅河口市第五中学2022-2023学年高二下学期期初考试数学试题
名校
解题方法
6 . 已知分别是椭圆的左、右焦点,A是C的右顶点,,P是椭圆C上一点,M,N分别为线段的中点,O是坐标原点,四边形OMPN的周长为4.
(1)求椭圆C的标准方程
(2)若不过点A的直线l与椭圆C交于D,E两点,且,判断直线l是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.
(1)求椭圆C的标准方程
(2)若不过点A的直线l与椭圆C交于D,E两点,且,判断直线l是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.
您最近一年使用:0次
2023-01-02更新
|
1349次组卷
|
14卷引用:吉林省长春市第六中学2022-2023学年高二下学期4月月考数学试题
吉林省长春市第六中学2022-2023学年高二下学期4月月考数学试题山东省济宁市第一中学2022-2023学年高二上学期期末数学试题山东省烟台市烟台第一中学2022-2023学年高三上学期期末数学试题山东省临沂市费县第二中学2022-2023学年高二上学期期末数学试题山东省烟台第一中学2022-2023学年高二下学期入学摸底测试数学试题青海省西宁市海湖中学2022-2023学年高二下学期开学摸底考试数学试卷 A卷湖南省衡阳市衡阳县第四中学2022-2023学年高二平行班下学期开学模拟考试数学试题湖南省衡阳市衡阳县四中2022-2023学年高二创新班下学期开学模拟考试数学试题河南省洛阳市第八高级中学2023届高三下学期开学摸底考试理科数学试题湖北省襄阳市第四中学2022-2023学年高二下学期开学考试数学试题湖北省十堰市部分重点中学2022-2023学年高二下学期3月联考数学试题江苏省淮安市盱眙中学2023届高三七模数学试题山东省文登第一中学2024届高三上学期12月阶段测试数学试题新疆石河子第一中学2023-2024学年高二下学期3月月考数学试题
名校
解题方法
7 . 已知椭圆:过点,且该椭圆长轴长是短轴长的二倍.
(1)求椭圆的方程;
(2)设点关于原点对称的点为,过点且斜率存在的直线交椭圆于点M,N,直线MA,NA分别交直线于点P,Q,求证为定值.
(1)求椭圆的方程;
(2)设点关于原点对称的点为,过点且斜率存在的直线交椭圆于点M,N,直线MA,NA分别交直线于点P,Q,求证为定值.
您最近一年使用:0次
2022-12-29更新
|
524次组卷
|
2卷引用:吉林省通化市梅河口市第五中学2022-2023学年高二上学期期末考试数学试题
8 . 已知椭圆短轴的两个顶点与右焦点的连线构成等边三角形,直线与圆相切.
(1)求椭圆的方程;
(2)过点作两条互相垂直的直线,与椭圆分别交于四点,如图,求四边形的面积的取值范围.
(1)求椭圆的方程;
(2)过点作两条互相垂直的直线,与椭圆分别交于四点,如图,求四边形的面积的取值范围.
您最近一年使用:0次
2022-12-03更新
|
1146次组卷
|
7卷引用:吉林省通化梅河口市第五中学2022-2023学年高三上学期期末考试数学试题
吉林省通化梅河口市第五中学2022-2023学年高三上学期期末考试数学试题四川省成都市东部新区养马高级中学2022-2023学年高二上学期期中考试数学(理)试题(已下线)专题13 圆锥曲线压轴解答题常考套路归类(精讲精练)-1(已下线)期末押题预测卷01(范围:选择性必修第一册、选择性必修第二册)-【单元测试】2022-2023学年高二数学分层训练AB卷(人教B版2019)(已下线)专题04 圆锥曲线经典题型全归纳(1)山东省青岛市第十七中学2022-2023学年高二上学期期末数学试题(已下线)高二数学开学摸底考01(新高考地区)-2023-2024学年高中下学期开学摸底考试卷
9 . 已知椭圆的左顶点为,点在椭圆上,且.
(1)求椭圆的标准方程.
(2)设过点的直线与椭圆交于(异于两点)两点,直线,分别与轴交于三点.证明:是线段的中点.
(1)求椭圆的标准方程.
(2)设过点的直线与椭圆交于(异于两点)两点,直线,分别与轴交于三点.证明:是线段的中点.
您最近一年使用:0次
2022-11-16更新
|
421次组卷
|
3卷引用:吉林省吉林市等2地2022-2023学年高二上学期期中联考数学试题
名校
解题方法
10 . 已知椭圆C:的左、右顶点分别为A、B,上顶点M与左右顶点连线MA,MB的斜率乘积为,焦距为4.
(1)求椭圆C的方程;
(2)设点P为椭圆上异于A,B的点,直线AP与y轴的交点为Q,过坐标原点O作交椭圆于N点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.
(1)求椭圆C的方程;
(2)设点P为椭圆上异于A,B的点,直线AP与y轴的交点为Q,过坐标原点O作交椭圆于N点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.
您最近一年使用:0次
2022-11-14更新
|
796次组卷
|
3卷引用:吉林省实验中学2022-2023学年高二上学期期中数学试题