1 . 设过点与直线相切的动圆圆心的轨迹为,不过坐标原点的直线与曲线交于、两点,且.
(1)求曲线的方程;
(2)求证:直线过定点;
(3)若、两点到的距离相差为6,求的值.
(1)求曲线的方程;
(2)求证:直线过定点;
(3)若、两点到的距离相差为6,求的值.
您最近一年使用:0次
解题方法
2 . 已知曲线C上任意点到点F(1,0)距离比到直线x+2=0的距离少1.
(1)求C的方程,并说明C为何种曲线;
(2)已知A(1,2)及曲线C上的两点B和D,直线AB,AD的斜率分别为k1,k2,且k1+k2=1,求证:直线BD经过定点.
(1)求C的方程,并说明C为何种曲线;
(2)已知A(1,2)及曲线C上的两点B和D,直线AB,AD的斜率分别为k1,k2,且k1+k2=1,求证:直线BD经过定点.
您最近一年使用:0次
名校
解题方法
3 . 已知抛物线上一点到焦点的距离为4.
(1)求抛物线的标准方程;
(2)过焦点的直线与抛物线交于不同的两点,,为坐标原点,设直线,的斜率分别为,,求证:为定值.
(1)求抛物线的标准方程;
(2)过焦点的直线与抛物线交于不同的两点,,为坐标原点,设直线,的斜率分别为,,求证:为定值.
您最近一年使用:0次
2022-12-20更新
|
617次组卷
|
5卷引用:四川省泸县第一中学2022-2023学年高二上学期期末考试数学(理)试题
解题方法
4 . 抛物线的焦点是椭圆的一个焦点.
(1)求的准线方程;
(2)若是直线上的一动点,过向作两条切线,切点为M,N,试探究直线MN是否过定点?若是,请求出定点,若否,请说明理由.
(1)求的准线方程;
(2)若是直线上的一动点,过向作两条切线,切点为M,N,试探究直线MN是否过定点?若是,请求出定点,若否,请说明理由.
您最近一年使用:0次
解题方法
5 . 抛物线的焦点是椭圆的一个焦点.
(1)求的准线方程;
(2)若是直线上的一动点,过向作两条切线,切点为M,N,当点到直线的距离最大值时,求点的坐标.
(1)求的准线方程;
(2)若是直线上的一动点,过向作两条切线,切点为M,N,当点到直线的距离最大值时,求点的坐标.
您最近一年使用:0次
名校
解题方法
6 . 已知拋物线的焦点为,过点且斜率为的直线交于两点.当时,.
(1)求的方程;
(2)若关于轴的对称点为,当变化时,求证:直线过定点,并求该定点坐标.
(1)求的方程;
(2)若关于轴的对称点为,当变化时,求证:直线过定点,并求该定点坐标.
您最近一年使用:0次
2022-07-20更新
|
341次组卷
|
5卷引用:四川省资阳市2021-2022学年高二下学期期末质量检测数学(理)试题
四川省资阳市2021-2022学年高二下学期期末质量检测数学(理)试题四川省资阳市2021-2022学年高二下学期期末数学文科试题四川省泸县第四中学2022-2023学年高二下学期开学考试数学(理)试题江苏省南京外国语学校2023-2024学年高二上学期10月月考数学试题(已下线)专题3-6 抛物线综合大题归类(讲+练)-【巅峰课堂】2023-2024学年高二数学热点题型归纳与培优练(人教A版2019选择性必修第一册)
7 . 在平面直角坐标系xOy中,已知点,点P到点F的距离比点P到直线的距离小1,记P的轨迹为C.
(1)求曲线C的方程;
(2)在直线上任取一点M,过M作曲线C的切线,切点分别为A、B,求证直线AB过定点.
(1)求曲线C的方程;
(2)在直线上任取一点M,过M作曲线C的切线,切点分别为A、B,求证直线AB过定点.
您最近一年使用:0次
解题方法
8 . 在平面直角坐标系xOy中,已知点,点P到点F的距离比点P到x轴的距离大2,记P的轨迹为C.
(1)求C的方程;
(2)A、B是C上的两点,直线OA、OB的斜率分别为 且,求证直线过定点.
(1)求C的方程;
(2)A、B是C上的两点,直线OA、OB的斜率分别为 且,求证直线过定点.
您最近一年使用:0次
2022-07-15更新
|
1233次组卷
|
4卷引用:四川省遂宁市2021-2022学年高二下学期期末数学文科试题
解题方法
9 . 设抛物线上位于第一象限的点M与焦点F的距离为,点M到x轴的距离为2p,直线l与抛物线相交于A,B两点,且.
(1)求抛物线的方程和点M的坐标;
(2)求证:直线l恒过定点.
(1)求抛物线的方程和点M的坐标;
(2)求证:直线l恒过定点.
您最近一年使用:0次
解题方法
10 . 设抛物线位于第一象限的点M与焦点F的距离为,点M到x轴的距离为2p,直线l与抛物线相交于A,B两点,且.
(1)求抛物线的方程和点M的坐标;
(2)探究直线l是否恒过定点,并说明理由.
(1)求抛物线的方程和点M的坐标;
(2)探究直线l是否恒过定点,并说明理由.
您最近一年使用:0次