组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 111 道试题
1 . 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值E(ξ),方差D(ξ).
2022-11-08更新 | 2018次组卷 | 32卷引用:专题11.9 离散型随机变量的均值与方差(讲)【理】-《2020年高考一轮复习讲练测》

2 . 某纺织厂为了生产一种高端布料,准备从A农场购进一批优质棉花,厂方技术员从A农场存储的优质棉花中随机抽取了100处棉花,分别测量了其纤维长度(单位:mm)的均值,收集到100个样本数据,并制成如下频数分布表:

长度(单位:mm)

[23,25)

[25,27)

[27,29)

[29,31)

[31,33)

[33,35)

[35,37)

[37,39]

频数

4

9

16

24

18

14

10

5


(1)求这100个样本数据的平均数和样本方差(同一组数据用该区间的中点值作代表);
(2)将收集到的数据绘成直方图可以认为这批棉花的纤维长度服从分布
其中

①利用正态分布,求

②纺织厂将A农场送来的这批优质棉进行二次检验,从中随机抽取20处测量其纤维均值yii=1,2…,20),数据如下:

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

24.1

31.8

32.7

28.2

28.4

34.3

29.1

34.8

37.2

30.8

y11

y12

y13

y14

y15

y16

y17

y18

y19

y20

30.6

25.2

32.9

27.1

35.9

28.9

33.9

29.5

35.0

29.9

若20个样本中纤维均值的频率不低于①中即可判断该批优质棉花合格,否则认为农场运送时掺杂了次品,判断该批棉花不合格.按照此依据判断A农场送来的这批棉花是否为合格的优质棉花,并说明理由.

附:若,则

2022-11-08更新 | 523次组卷 | 6卷引用:【省级联考】山西省2019届高三高考考前适应性训练(三)理科数学试题
3 . 为了响应大学毕业生自主创业的号召,小李毕业后开了水果店,水果店每天以每个5元的价格从农场购进若干西瓜,然后以每个10元的价格出售.如果当天卖不完,剩下的西瓜作赠品处理.
(1)若水果店一天购进16个西瓜,求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;
(2)水果店记录了100天西瓜的日需求量(单位:个),整理得下表:
日需求量14151617181920
频数10201616151310
以100天记录的各需求量的频率作为各需求量发生的概率.
①若水果店一天购进16个西瓜,表示当天的利润(单位:元),求的分布列、数学期望及方差;
②若水果店计划一天购进16个或17个西瓜,你认为应购进16个还是17个?请说明理由.
2022-07-25更新 | 1052次组卷 | 15卷引用:广东省六校(广州二中,深圳实验,珠海一中,中山纪念,东莞中学,惠州一中)2018届高三下学期第三次联考数学(理)试题
4 . 某公司计划在2022年年初将1000万元用于投资,现有两个项目供选择.项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为.项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,也可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为.
(1)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(2)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?(参考数据:
2021-09-24更新 | 735次组卷 | 11卷引用:湖北襄樊四中2010年五月高考适应性考试数学试卷(理科)
智能选题,一键自动生成优质试卷~
5 . 某陶瓷厂只生产甲、乙两种不同规格的瓷砖,甲种瓷砖的标准规格长宽为,乙种瓷砖的标准规格长宽为,根据长期的检测结果,两种规格瓷砖每片的重量(单位:)都服从正态分布,重量在之外的瓷砖为废品,废品销毁不流入市场,其他重量的瓷砖为正品.

(1)在该陶瓷厂生产的瓷砖中随机抽取10片进行检测,求至少有1片为废品的概率;
(2)监管部门规定瓷砖长宽规格“尺寸误差”的计算方式如下:若瓷砖的实际长宽为,标准长宽为,则“尺寸误差”为,按行业生产标准,其中“一级品”“二级品”“合格品”的“尺寸误差”的范围分别是(正品瓷砖中没有“尺寸误差”大于的瓷砖),现分别从甲、乙两种产品的正品中随机抽取各100片,分别进行“尺寸误差”的检测,统计后,绘制其频率分布直方图如图所示,已知经销商经营甲种瓷砖每片“一级品”的利润率为0.12,“二级品”的利润率为0.08,“合格品”的利润率为0.02.经销商经营乙种瓷砖每片“一级品”的利润率为0.10,“二级品”的利润率为0.05,“合格品”的利润率为0.02.视频率为概率.
①若经销商在甲、乙两种瓷砖上各投资10万元,分别表示投资甲、乙两种瓷砖所获得的利润,求的数学期望和方差,并由此分析经销商经销两种瓷砖的利弊;
②若经销商在甲、乙两种瓷砖上总投资10万元,则分别在甲、乙两种瓷砖上投资多少万元时,可使得投资所获利润的方差和最小?
附:若随机变量服从正态分布,则
2021-09-10更新 | 370次组卷 | 4卷引用:湖南师大附中2020届高三下学期高考模拟卷(三)理科数学试题
6 . 甲口袋里有大小相同编号不同的2个黑球和3个白球,乙口袋里有大小相同编号不同的3个黑球和2个白球,现从甲口袋中取出3个球,记黑球个数为,从乙口袋中也取出3个球,记黑球个数为.
(1)求时的概率;
(2)若,求随机变量的数学期望的方差.
2021-09-07更新 | 216次组卷 | 1卷引用:浙江省温州市瑞安中学2020-2021学年高二上学期期末数学试题
7 . 旅游公司为3个旅游团提供甲、乙、丙、丁4条旅游线路,每个旅游团任选其中一条.
(1)求3个旅游团选择3条不同的线路的概率;
(2)求选择甲线路旅游团数的分布列、均值及方差.
8 . 我市某大学组建了五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须且只能参加一个社团,假定某寝室的甲、乙、丙三名学生对这五个社团的选择是等可能的.
(1)求甲、乙、丙三名学生中至少有两人参加同一社团的概率;
(2)设随机变量为甲、乙、丙这三个学生参加社团的人数,求的分布列、数学期望及方差.
2021-01-16更新 | 770次组卷 | 4卷引用:专题60 统计与概率(同步练习)-2021年高考一轮数学(理)单元复习一遍过
9 . 据中国日报网报道:TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席.其中超算全球第一“神威·太湖之光”完全使用了国产处理器.为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下:(数值越小速度越快,单位是MIPS
测试1测试2测试3测试4测试5测试6测试7测试8测试9测试10测试11测试12
品牌A3691041121746614
品牌B2854258155121021
经过了解,前6次测试是打开含有文字与表格的文件,后6次测试是打开含有文字与图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.
2020-12-16更新 | 61次组卷 | 1卷引用:北京景山学校远洋分校2020—2021 学年高一年级上学期第二次月考数学试题
10 . 在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,提倡文明健康、绿色环保的生活方式”的要求.某学生小组通过问卷调查,随机收集了和该区居民的日常生活习惯有关的六类数据.分别是:(1)卫生习惯;(2)垃圾处理;(3)体育锻炼;(4)心理健康;(5)膳食合理;(6)作息规律.经过数据整理,得如表:
卫生习惯垃圾处理体育锻炼心理健康膳食合理作息规律
有效答卷份数380550330410400430
习惯良好频率0.60.90.80.70.650.6
假设每份调查问卷只调查上述六类状况之一,且各类调查的结果相互独立.
(1)从该小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是“垃圾处理”中习惯良好者的概率;
(2)从“体育锻炼”和“心理健康”两类中各随机选取一份,估计恰有一份是具有良好习惯的概率;
(3)利用上述六类习惯调查的排序,即“卫生习惯”是第一类,“垃圾处理”是第二类“作息规律”是第六类用“”表示任选一位第类受访者是习惯良好者,“”表示任选一位第类受访者不是习惯良好者,2,3,4,5,.求出方差,2,3,4,5,,并由小到大排序.
2020-10-31更新 | 362次组卷 | 2卷引用:内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟试题
共计 平均难度:一般