(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与均值E(ξ),方差D(ξ).
2 . 某纺织厂为了生产一种高端布料,准备从A农场购进一批优质棉花,厂方技术员从A农场存储的优质棉花中随机抽取了100处棉花,分别测量了其纤维长度(单位:mm)的均值,收集到100个样本数据,并制成如下频数分布表:
长度(单位:mm) | [23,25) | [25,27) | [27,29) | [29,31) | [31,33) | [33,35) | [35,37) | [37,39] |
频数 | 4 | 9 | 16 | 24 | 18 | 14 | 10 | 5 |
(1)求这100个样本数据的平均数和样本方差(同一组数据用该区间的中点值作代表);
(2)将收集到的数据绘成直方图可以认为这批棉花的纤维长度服从分布
其中,
①利用正态分布,求;
②纺织厂将A农场送来的这批优质棉进行二次检验,从中随机抽取20处测量其纤维均值yi(i=1,2…,20),数据如下:
y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 | y9 | y10 |
24.1 | 31.8 | 32.7 | 28.2 | 28.4 | 34.3 | 29.1 | 34.8 | 37.2 | 30.8 |
y11 | y12 | y13 | y14 | y15 | y16 | y17 | y18 | y19 | y20 |
30.6 | 25.2 | 32.9 | 27.1 | 35.9 | 28.9 | 33.9 | 29.5 | 35.0 | 29.9 |
若20个样本中纤维均值的频率不低于①中即可判断该批优质棉花合格,否则认为农场运送时掺杂了次品,判断该批棉花不合格.按照此依据判断A农场送来的这批棉花是否为合格的优质棉花,并说明理由.
附:若,则,,
(1)若水果店一天购进16个西瓜,求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;
(2)水果店记录了100天西瓜的日需求量(单位:个),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①若水果店一天购进16个西瓜,表示当天的利润(单位:元),求的分布列、数学期望及方差;
②若水果店计划一天购进16个或17个西瓜,你认为应购进16个还是17个?请说明理由.
(1)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(2)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?(参考数据:,)
(1)在该陶瓷厂生产的瓷砖中随机抽取10片进行检测,求至少有1片为废品的概率;
(2)监管部门规定瓷砖长宽规格“尺寸误差”的计算方式如下:若瓷砖的实际长宽为,,标准长宽为,,则“尺寸误差”为,按行业生产标准,其中“一级品”“二级品”“合格品”的“尺寸误差”的范围分别是,,(正品瓷砖中没有“尺寸误差”大于的瓷砖),现分别从甲、乙两种产品的正品中随机抽取各100片,分别进行“尺寸误差”的检测,统计后,绘制其频率分布直方图如图所示,已知经销商经营甲种瓷砖每片“一级品”的利润率为0.12,“二级品”的利润率为0.08,“合格品”的利润率为0.02.经销商经营乙种瓷砖每片“一级品”的利润率为0.10,“二级品”的利润率为0.05,“合格品”的利润率为0.02.视频率为概率.
①若经销商在甲、乙两种瓷砖上各投资10万元,和分别表示投资甲、乙两种瓷砖所获得的利润,求和的数学期望和方差,并由此分析经销商经销两种瓷砖的利弊;
②若经销商在甲、乙两种瓷砖上总投资10万元,则分别在甲、乙两种瓷砖上投资多少万元时,可使得投资所获利润的方差和最小?
附:若随机变量服从正态分布,则,,,,,
(1)求时的概率;
(2)若,求随机变量的数学期望及的方差.
(1)求3个旅游团选择3条不同的线路的概率;
(2)求选择甲线路旅游团数的分布列、均值及方差.
(1)求甲、乙、丙三名学生中至少有两人参加同一社团的概率;
(2)设随机变量为甲、乙、丙这三个学生参加或社团的人数,求的分布列、数学期望及方差.
测试1 | 测试2 | 测试3 | 测试4 | 测试5 | 测试6 | 测试7 | 测试8 | 测试9 | 测试10 | 测试11 | 测试12 | |
品牌A | 3 | 6 | 9 | 10 | 4 | 1 | 12 | 17 | 4 | 6 | 6 | 14 |
品牌B | 2 | 8 | 5 | 4 | 2 | 5 | 8 | 15 | 5 | 12 | 10 | 21 |
卫生习惯 | 垃圾处理 | 体育锻炼 | 心理健康 | 膳食合理 | 作息规律 | |
有效答卷份数 | 380 | 550 | 330 | 410 | 400 | 430 |
习惯良好频率 | 0.6 | 0.9 | 0.8 | 0.7 | 0.65 | 0.6 |
(1)从该小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是“垃圾处理”中习惯良好者的概率;
(2)从“体育锻炼”和“心理健康”两类中各随机选取一份,估计恰有一份是具有良好习惯的概率;
(3)利用上述六类习惯调查的排序,即“卫生习惯”是第一类,“垃圾处理”是第二类“作息规律”是第六类用“”表示任选一位第类受访者是习惯良好者,“”表示任选一位第类受访者不是习惯良好者,2,3,4,5,.求出方差,,2,3,4,5,,并由小到大排序.