组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 9 道试题
1 . 某数学兴趣小组为研究本校学生数学成绩与语文成绩的关系,采取有放回的简单随机抽样,从学校抽取样本容量为200的样本,将所得数学成绩与语文成绩的样本观测数据整理如下:

语文成绩

合计

优秀

不优秀

数学

成绩

优秀

50

30

80

不优秀

40

80

120

合计

90

110

200

(1)根据的独立性检验,能否认为数学成绩与语文成绩有关联?
(2)在人工智能中常用表示在事件发生的条件下事件发生的优势,在统计中称为似然比.现从该校学生中任选一人,表示“选到的学生语文成绩不优秀”,表示“选到的学生数学成绩不优秀”请利用样本数据,估计的值.
(3)现从数学成绩优秀的样本中,按分层抽样的方法选出8人组成一个小组,从抽取的8人里再随机抽取3人参加数学竞赛,求这3人中,语文成绩优秀的人数的概率分布列及数学期望.
附:
2023-02-17更新 | 4881次组卷 | 21卷引用:江苏省无锡市锡东高级中学2023-2024学年高二下学期5月月考数学试题
2 . 为深入学习贯彻党的二十大精神,推动全市党员干部群众用好“学习强国”学习平台,激发干事创业热情.某单位组织“学习强国”知识竞赛,竞赛共有道题目,随机抽取道让参赛者回答.已知小明只能答对其中的道,试求:
(1)抽到他能答对题目数的分布列;
(2)求的期望和方差
2024-03-19更新 | 2681次组卷 | 10卷引用:第8章 概率 章末题型归纳总结-【帮课堂】2023-2024学年高二数学同步学与练(苏教版2019选择性必修第二册)
3 . 在某校举办“青春献礼二十大,强国有我新征程”的知识能力测评中,随机抽查了100名学生,其中共有4名女生和3名男生的成绩在90分以上,从这7名同学中每次随机抽1人在全校作经验分享,每位同学最多分享一次,记第一次抽到女生为事件A,第二次抽到男生为事件B
(1)求
(2)若把抽取学生的方式更改为:从这7名学生中随机抽取3人进行经验分享,记被抽取的3人中女生的人数为X,求X的分布列和数学期望.
2023-02-15更新 | 2597次组卷 | 13卷引用:8.2.3-8.2.4二项分布 超几何分布(练习)
4 . 2024年“与辉同行”直播间开播,董宇辉领衔7位主播从“心”出发,其中男性5人,女性3人,现需排班晚8:00黄金档,随机抽取两人,则男生人数的期望为(       
A.B.C.D.
2024-03-31更新 | 1436次组卷 | 8卷引用:专题05 离散型随机变量的分布列常考点(8类题型)-备战2023-2024学年高二数学下学期期末真题分类汇编(江苏专用)
智能选题,一键自动生成优质试卷~
5 . 袋中有10个大小相同的球,其中6个黑球,4个白球,现从中任取4个球,记随机变量X为其中白球的个数,随机变量Y为其中黑球的个数,若取出一个白球得2分,取出一个黑球得1分,随机变量Z为取出4个球的总得分,则下列结论中正确的是(       
A.B.
C.D.
2022-05-31更新 | 2688次组卷 | 9卷引用:江苏省南京师范大学附属中学2021-2022学年高二下学期期末模拟数学试题
6 . 学校师生参与创城志愿活动.高二(1)班某小组有男生4人,女生2人,现从中随机选取2人作为志愿者参加活动.
(1)求在有女生参加活动的条件下,恰有一名女生参加活动的概率;
(2)记参加活动的女生人数为,求的分布列及期望
(3)若志愿活动共有卫生清洁员交通文明监督员科普宣传员三项可供选择.每名女生至多从中选择2项活动,且选择参加1项或2项的可能性均为;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为.每人每参加1项活动可获得3个工时,记随机选取的两人所得工时之和为,求的期望.
2024-05-08更新 | 914次组卷 | 6卷引用:江苏省镇江市八校2023~2024学年高二下学期期末联考数学试卷
7 . 已知某地区秋季的昼夜温差,且,该地区某班级秋季每天感冒的人数y关于昼夜温差的经验回归方程为,秋季某天该班级感冒的学生有9人,其中有4位男生,5位女生,则下列结论正确的是(       
(参考数据:
A.若,则
B.从这9人中随机抽取2人,其中至少有一位女生的概率为
C.从这9人中随机抽取2人,其中男生人数的期望为
D.昼夜温差每提高,该班级感冒的学生大约增加2人
8 . 某车企随机调查了今年某月份购买本车企生产的台新能源汽车车主,统计得到以下列联表,经过计算可得.
喜欢不喜欢总计
男性
女性
总计
(1)完成表格并求出值,并判断有多大的把握认为购车消费者对新能源车的喜欢情况与性别有关;
(2)采用比例分配的分层抽样法从调查的不喜欢和喜欢新能源汽车的车主中随机抽取12人,再从抽取的12人中抽取4人,设被抽取的4人中属于不喜欢新能源汽车的人数为,求的分布列及数学期望.
附:,其中.
0.150.100.050.0250.0100.0050.001
2.0722.7063.8415.0246.6357.87910.828
9 . 某社区为了推动全民健身,增加人们对体育运动的兴趣,随机抽取了男,女各 200 人做 统计调查. 统计显示,被调查的人中,喜欢运动的男性有 100 人,不喜欢运动的女性有 50 人.
(1)完成下面列联表,并判断能否在犯错误概率不超过 0.005的情况下认为人们喜欢运动与性别有关;

喜欢

不喜欢

合计

男性




女性




合计




(2)为了鼓励全民运动,社区开展一次趣味体育比赛,并设置3个奖项,每个奖项有且仅有 一人获取,每人最多只能获得 1 个奖项; 现从这 400 人中选出男性4人,女性4人参加 比赛,记为获奖的男性人数,求的分布列和数学期望.
附:

0.1

0.05

0.01

0.005

0.001

2.706

3.841

6.635

7.879

10.828

共计 平均难度:一般