组卷网 > 知识点选题 > 高中数学综合库
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 141 道试题
1 . 对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为,要求洗完后的清洁度是0.99.有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为.设用单位质量的水初次清洗后的清洁度是,用单位质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度.
(1)分别求出方案甲以及时方案乙的用水量,并比较哪一种方案用水量较少;
(2)若采用方案乙,为定值,当为何值时,总用水量最少?并讨论取不同数值时,对最少总用水量多少的影响.
2023-03-23更新 | 187次组卷 | 1卷引用:黑龙江省大庆铁人中学2022-2023学年高一上学期期末考试数学试题
2 . 某高校就业部从该校2022年已就业的博士研究生的毕业生中随机抽取了200人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:
   
(1)将同一组数据用该区间的中点值作代表,求这200人月薪收入的样本平均数
(2)该校在某地区就业的2022届博士研究生的毕业生共100人,决定于2023年五一劳动节长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:
方案一:设区间,月薪落在区间左侧的每人收取400元,月薪落在区间内的每人收取600元,月薪落在区间右侧的每人收取800元;
方案二:每人按月薪收入的样本平均数的3%收取;
用该校就业部统计的这200人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?
3 . 为普及航空航天科技相关知识、发展青少年航空航天科学素养,贵州省某中学组织开展“筑梦空天”航空航天知识竞赛.竞赛试题有甲、乙、丙三类(每类题有若干道),各类试题的每题分值及小明答对概率如下表所示,各小题回答正确得到相应分值,否则得分,竞赛分三轮答题依次进行,各轮得分之和即为选手总分.

项目


题型

每小题分值

每小题答对概率

甲类题

乙类题

丙类题

其竞赛规则为:
第一轮,先回答一道甲类题,若正确,进入第二轮答题;若错误,继续回答另一道甲类题,该题回答正确,同样进入第二轮答题,否则,退出比赛.
第二轮,在乙类题或丙类题中选择一道作答,若正确,进入第三轮答题;否则,退出比赛.
第三轮,在前两轮未作答的那一类试题中选择一道作答.
小明参加竞赛,有两种方案选择,方案一:先答甲类题,再答乙类题,最后答丙类题;
方案二:先答甲类题,再答丙类题,最后答乙类题.各题答对与否互不影响.请完成以下解答:
(1)若小明选择方案一,求答题次数恰好为次的概率;
(2)经计算小明选择方案一所得总分的数学期望为,为使所得总分的数学期望最大,小明该选择哪一种方案?并说明理由.
解答题-问答题 | 适中(0.65) |
名校
4 . 我市在创建全国文明城市过程中,决定购买AB两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.
(1)求购买AB两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?
2022-08-13更新 | 56次组卷 | 1卷引用:黑龙江省哈尔滨市第三中学校2021-2022学年高一上学期入学考试数学试题
5 . 统计某公司名推销员的月销售额(单位:千元)得到如下频率分布直方图.

(1)同一组数据用该区间的中间值作代表,求这名推销员的月销售额的平均数与方差
(2)请根据这组数据提出使的推销员能够完成销售指标的建议;
(3)现有两种奖励机制:
方案一:设,销售额落在左侧,每人每月奖励千元;销售额落在内,每人每月奖励千元;销售额落在右侧,每人每月奖励千元.
方案二:每人每月奖励其月销售额的
用统计的频率进行估算,选择哪一种方案公司需提供更多的奖励金?(参考数据:
记:(其中对应的频率).
2021-06-23更新 | 1352次组卷 | 5卷引用:黑龙江省哈尔滨市第四中学校2022-2023学年高二上学期第一次月考数学试题
6 . 某专营店统计了最近天到该店购物的人数和时间第天之间的数据,列表如下:

(1)由表中给出的数据,判断是否可用线性回归模型拟合人数与时间之间的关系?(若,则认为线性相关程度高,可用线性回归模型拟合;否则,不可用线性回归模型拟合.计算时精确到
(2)该专营店为了吸引顾客,推出两种促销方案:方案一,购物金额每满元可减元;方案二,购物金额超过元可抽奖三次,每次中奖的概率均为,且每次抽奖互不影响,中奖一次打折,中奖两次打折,中奖三次打折.某顾客计划在此专营店购买一件价值元的商品,请从实际付款金额的数学期望的角度分析,选哪种方案更优惠?
参考数据:.附:相关系数.
2023-11-07更新 | 1083次组卷 | 11卷引用:黑龙江省大兴安岭实验中学(东校区)2024届高三上学期11月月考数学试题
7 . 目前脱贫攻坚进入决胜的关键阶段,某扶贫企业为了增加工作岗位和增加员工收入,决定投入90万元再上一套生产设备,预计使用该设备后前年的支出成本为万元,每年的销售收入95万元.
(1)估计该设备从第几年开始实现总盈利;
(2)使用若干年后对该设备处理的方案有两种:
方案一:当总盈利额达到最大值时,该设备以20万元的价格处理;
方案二:当年平均盈利额达到最大值时,该设备以60万元的价格处理;
问哪种方案较为合理?并说明理由.
8 . 某公司为了让职工业余时间加强体育锻炼,修建了一个运动俱乐部,公司随机抽查了200名职工在修建运动俱乐部前后每天运动的时间,得到以下频数分布表:
表一(运动俱乐部修建前)
时间(分钟)
人数36588125
表二(运动俱乐部修建后)
时间(分钟)
人数18638336
(1)分别求出修建运动俱乐部前和修建运动俱乐部后职工每天运动的平均时间(同一时间段的数据取该组区间的中点值作代表)﹔
(2)运动俱乐部内有一套与室温调节有关的设备,内有2个完全一样的用电器A,只有这2个用电器A都正常工作时,整套设备才正常工作,且2个用电器A是否正常工作互不影响.用电器AMN两种品牌,M品牌的销售单价为1000元,正常工作寿命为11个月或12个月(概率均为);N品牌的销售单价为400元,正常工作寿命为5个月或6个月(概率均为).现有两种购置方案:
方案1:购置2个M品牌用电器﹔
方案2:购置1个M品牌用电器和2个N品牌用电器(其中1个N品牌用电器不能正常工作时则使用另一个N品牌用电器).
试求两种方案各自设备性价比(设备正常运行时间与购置用电器A的成本比)的分布列,并从性价比的数学期望角度考虑,选择哪种方案更实惠?
9 . 2021年新高考数学试卷中对每道多选题的得分规定:全部选对的得5分,部分选对的得2分,有选错的得0分.小明在做多选题的第11题、第12题时通常有两种策略:
策略为避免选错只选出一个最有把握的选项.这种策略每个题耗时约3min.
策略选出自己认为正确的全部选项.这种策略每个题耗时约6min.
某次数学考试临近,小明通过前期大量模拟训练得出了两种策略下第11题和第12题的作答情况如下:
第11题:如果采用策略,选对的概率为0.8,采用策略,部分选对的概率为0.5,全部选对的概率为0.4.
第12题:如果采用策略,选对的概率为0.7,采用策略,部分选对的概率为0.6,全部选对的概率为0.3.
如果这两题总用时超过10min,其他题目会因为时间紧张少得2分.假设小明作答两题的结果互不影响.
(1)若小明同学此次考试中决定第11题采用策略、第12题采用策略,设此次考试他第11题和第12题总得分为,求的分布列.
(2)小明考前设计了以下两种方案:
方案1:第11题采用策略,第12题采用策略
方案2:第11题和第12题均采用策略
如果你是小明的指导老师,从整张试卷尽可能得分更高的角度出发,你赞成他的哪种方案?并说明理由.
10 . 某光伏企业投资万元用于太阳能发电项目,年内的总维修保养费用为万元,该项目每年可给公司带来万元的收入.假设到第年年底,该项目的纯利润为万元.(纯利润累计收入总维修保养费用投资成本)
(1)写出纯利润的表达式,并求该项目从第几年起开始盈利.
(2)若干年后,该公司为了投资新项目,决定转让该项目,现有以下两种处理方案:
①年平均利润最大时,以万元转让该项目;
②纯利润最大时,以万元转让该项目.
你认为以上哪种方案最有利于该公司的发展?请说明理由.
2022-08-15更新 | 2518次组卷 | 32卷引用:黑龙江省哈尔滨德强高中2022-2023学年高一10月月考数学试题
共计 平均难度:一般