组卷网 > 知识点选题 > 计数原理与概率统计
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 21 道试题
1 . 篮球是一项风靡世界的运动,是深受大众喜欢的一项运动.
喜爱篮球运动不喜爱篮球运动合计
男性6040100
女性2080100
合计80120200
(1)为了解喜爱篮球运动是否与性别有关,随机抽取了男性和女性各100名观众进行调查,得到如上列联表,判断是否有99.9%的把握认为喜爱篮球运动与性别有关;
(2)校篮球队中的甲、乙、丙三名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外两个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,第次触球者是甲的概率记为,即.
①求(直接写出结果即可);
②证明:数列为等比数列,并比较第9次与第10次触球者是甲的概率的大小.
0.1000.0500.0250.0100.001
2.7063.8415.0246.63510.828
附:.
2024-01-17更新 | 1398次组卷 | 8卷引用:湖北省黄冈市浠水县第一中学2024届高三上学期期末数学试题
2 . 某企业生产一种零部件,其质量指标介于的为优品.技术改造前,该企业生产的该种零部件质量指标服从正态分布;技术改造后,该企业生产的同种零部件质量指标服从正态分布.
附:若,取.
(1)求该企业生产的这种零部件技术改造后的优品率与技术改造前的优品率之差;
(2)若该零件生产的控制系统中每个元件正常工作的概率都是,各个元件能否正常工作相互独立,如果系统中有超过一半的元件正常工作,系统就能正常工作.   系统正常工作的概率称为系统的可靠性.
①若控制系统原有个元件,计算该系统的可靠性,并判断若给该系统增加一个元件,可靠性是否提高?
②假设该系统配置有个元件,若再增加一个元件,是否一定会提高系统的可靠性?请给出你的结论并证明.
7日内更新 | 921次组卷 | 1卷引用:湖北省武汉市2024届高三下学期5月模拟训练试题数学试卷
3 . 甲、乙两个盒子中都装有大小、形状、质地相同的2个黑球和1个白球,现从甲、乙两个盒子中各任取一个球交换放入另一个盒子中,重复次这样的操作后,记甲盒子中黑球的个数为,甲盒中恰有2个黑球的概率为,恰有3个黑球的概率为.
(1)求
(2)设,证明:
(3)求的数学期望的值.
2023-09-07更新 | 757次组卷 | 2卷引用:湖北省宜荆荆恩2024届高三9月起点联考数学试题
4 . 小明进行投篮训练,已知每次投篮的命中率均为0.5.
(1)若小明共投篮4次,求在投中2次的条件下,第二次没有投中的概率;
(2)若小明进行两组训练,第一组投篮3次,投中次,第二组投篮2次,投中次,求
(3)记表示小明投篮次,恰有2次投中的概率,记表示小明在投篮不超过n次的情况下,当他投中2次后停止投篮,此时一共投篮的次数(当投篮n次后,若投中的次数不足2次也不再继续投),证明:.
智能选题,一键自动生成优质试卷~
解答题-问答题 | 适中(0.65) |
5 . 从有3个红球和3个蓝球的袋中,每次随机摸出1个球,摸出的球不再放回,记表示事件“第次摸到红球”,,2,…,6.
(1)求第一次摸到蓝球的条件下第二次摸到红球的概率;
(2)记表示同时发生的概率,表示已知都发生时发生的概率.
(ⅰ)证明:
(ⅱ)求.
2023-01-12更新 | 942次组卷 | 5卷引用:湖北省部分重点中学2023届高三上学期1月第二次联考数学试题
6 . 人口老龄化加剧的背景下,我国先后颁布了一系列生育政策,根据不同政策要求,分为两个时期Ⅰ和Ⅱ.根据部分调查数据总结出如下规律:对于同一个家庭,在Ⅰ时期内生孩人,在Ⅱ时期生孩人,(不考虑多胞胎)生男生女的概率相等.服从0-1分布且分布列如下图:
012
现已知一个家庭在Ⅰ时期没生孩子,则在Ⅱ时期生2个孩子概率为;若在Ⅰ时期生了1个女孩,则在时期生2个孩子概率为;若在Ⅰ时期生了1个男孩,则在Ⅱ时期生2个孩子概率为,样本点中Ⅰ时期生孩人数与Ⅱ时期生孩人数之比为(针对普遍家庭).
(1)求的期望与方差;
(2)由数据组成的样本空间根据分层随机抽样分为两层,样本点之比为,分别为,总体样本点与两个分层样本点均值分别为,方差分别为,证明:,并利用该公式估算题设样本总体的方差.
2023-08-02更新 | 1009次组卷 | 6卷引用:湖北省武昌实验中学2023-2024学年高三上学期10月月考数学试题
7 . 甲乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3乙胜的概率为0.2.
(1)第一局比赛后,甲的筹码个数记为,求的分布列和期望;
(2)求四局比赛后,比赛结束的概率;
(3)若表示“在甲所得筹码为枚时,最终甲获胜的概率”,则.证明:为等比数列.
2023-07-20更新 | 1734次组卷 | 6卷引用:湖北省武汉市第四十九中学2024届高三上学期九月调考模拟数学试题(二)
8 . 2022年2月6日,中国女足在两球落后的情况下,以3比2逆转击败韩国女足,成功夺得亚洲杯冠军,在之前的半决赛中,中国女足通过点球大战惊险战胜日本女足,其中门将朱钰两度扑出日本队员的点球,表现神勇.
(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X的分布列和期望;
(2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为,易知
①试证明为等比数列;
②设第n次传球之前球在乙脚下的概率为,比较的大小.
2022-05-12更新 | 5974次组卷 | 20卷引用:湖北省八市2022届高三下学期3月联考数学试题
9 . 规定抽球试验规则如下:盒子中初始装有白球和红球各一个,每次有放回的任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则记该轮为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功.
(1)某人进行该抽球试验时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量,求的分布列和数学期望;
(2)为验证抽球试验成功的概率不超过,有1000名数学爱好者独立的进行该抽球试验,记表示成功时抽球试验的轮次数,表示对应的人数,部分统计数据如下:

1

2

3

4

5

232

98

60

40

20

关于的回归方程,并预测成功的总人数(精确到1);
(3)证明:
附:经验回归方程系数:
参考数据:(其中).
2022-04-08更新 | 6789次组卷 | 16卷引用:湖北省襄阳市第五中学2022届高三下学期适应性考试(三)数学试题
10 . 随机变量的概念是俄国数学家切比雪夫在十九世纪中叶建立和提倡使用的.切比雪夫在数论、概率论、函数逼近论、积分学等方面均有所建树,他证明了如下以他名字命名的离散型切比雪夫不等式:设为离散型随机变量,则,其中为任意大于0的实数.切比雪夫不等式可以使人们在随机变量的分布未知的情况下,对事件的概率作出估计.
(1)证明离散型切比雪夫不等式;
(2)应用以上结论,回答下面问题:已知正整数.在一次抽奖游戏中,有个不透明的箱子依次编号为,编号为的箱子中装有编号为个大小、质地均相同的小球.主持人邀请位嘉宾从每个箱子中随机抽取一个球,记从编号为的箱子中抽取的小球号码为,并记.对任意的,是否总能保证(假设嘉宾和箱子数能任意多)?并证明你的结论.
附:可能用到的公式(数学期望的线性性质):对于离散型随机变量满足,则有.
2022-10-03更新 | 1893次组卷 | 7卷引用:湖北省二十一所重点中学2023届高三上学期第三次联考数学试题
共计 平均难度:一般