组卷网 > 知识点选题 > 求线面角
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 4 道试题
1 . 正多面体又称为柏拉图立体,是指一个多面体的所有面都是全等的正三角形或正多边形,每个顶点聚集的棱的条数都相等,这样的多面体就叫做正多面体.可以验证一共只有五种多面体.令均为正整数),我们发现有时候某正多面体的所有顶点都可以和另一个正多面体的一些顶点重合,例如正面体的所有顶点可以与正面体的某些顶点重合,正面体的所有顶点可以与正面体的所有顶点重合,等等.
(1)当正面体的所有顶点可以与正面体的某些顶点重合时,求正面体的棱与正面体的面所成线面角的最大值;
(2)当正面体在棱长为的正面体内,且正面体的所有顶点均为正面体各面的中心时,求正面体某一面所在平面截正面体所得截面面积;
(3)已知正面体的每个面均为正五边形,正面体的每个面均为正三角形.考生可在以下2问中选做1问.
(第一问答对得2分,第二问满分8分,两题均作答,以第一问结果给分)
第一问:求棱长为的正面体的表面积;
第二问:求棱长为的正面体的体积.
2023-11-10更新 | 556次组卷 | 3卷引用:重庆市乌江新高考协作体2024届高三上学期高考第一次联合调研抽测数学试题
2 . 在正方体中,是侧面上一动点,下列结论正确的是(       
A.三棱锥的体积为定值
B.若,则平面
C.若,则与平面所成角为
D.若∥平面,则所成角的正弦最小值为
2023-07-17更新 | 1106次组卷 | 5卷引用:重庆市第八中学校2023-2024学年高二上学期第一次月考数学试题
3 . 如图,在四棱锥中,MAD为等边三角形,平面平面ABCD,点N在棱MD上,直线平面ACN

   

(1)证明:
(2)设二面角的平面角为,直线CN与平面ABCD所成的角为,若的取值范围是,求的取值范围.
4 . 如图,斜三棱柱中,底面是正三角形,分别是侧棱上的点,且,设直线与平面所成的角分别为,平面与底面所成的锐二面角为,则(       

A.
B.
C.
D.
2022-05-11更新 | 2406次组卷 | 11卷引用:重庆市第一中学教育共同体2022-2023学年高一下学期期中数学试题
共计 平均难度:一般