名校
1 . 如图,在四棱锥中,底面是等腰梯形,,侧面平面分别为的中点.
(2)若,求直线与平面所成角的正弦值.
(1)证明:平面.
(2)若,求直线与平面所成角的正弦值.
您最近一年使用:0次
2024-07-05更新
|
317次组卷
|
5卷引用:广西贵港市2023-2024年高二下学期期末教学质量监测数学试题
名校
解题方法
2 . 如图:底面是菱形,平面,,且.(1)求证:平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
您最近一年使用:0次
名校
解题方法
3 . 如图,在棱长为2的正方体中,分别为的中点,则下列选项正确的是( )
A.直线与直线平行 |
B.直线与底面所成的角为 |
C.直线与直线的距离为 |
D.直线到平面的距离为 |
您最近一年使用:0次
2024-01-25更新
|
259次组卷
|
3卷引用:广西桂林市2023-2024学年高二上学期数学期末质量检测数学试题
广西桂林市2023-2024学年高二上学期数学期末质量检测数学试题(已下线)第七章 应用空间向量解立体几何问题拓展 专题二 平面法向量求法及其应用 微点3 平面法向量求法及其应用综合训练【基础版】浙江省杭州市严州中学新安江校区2024-2025学年高二上学期阶段性测试(返校考)数学试题
4 . 已知正方体的棱长为1,为棱(包含端点)上的动点,下列命题正确的是( )
A.二面角的大小为 |
B. |
C.若在正方形内部,且,则点的轨迹长度为 |
D.若平面,则直线与平面所成角的正弦值的取值范围为 |
您最近一年使用:0次
名校
解题方法
5 . 图1是由矩形、和菱形组成的一个平面图形,其中,,.将其沿,折起使得与重合,连接,如图2.
(1)证明:图2中的,,,四点共面,且平面平面;
(2)求图2中与平面所成角的正弦值.
(1)证明:图2中的,,,四点共面,且平面平面;
(2)求图2中与平面所成角的正弦值.
您最近一年使用:0次
名校
6 . 如图,底面,底面,四边形是正方形,.
(1)证明:平面;
(2)求直线与平面所成角的正切值.
(1)证明:平面;
(2)求直线与平面所成角的正切值.
您最近一年使用:0次
2023-01-15更新
|
752次组卷
|
4卷引用:广西桂林市荔浦县荔城中学2022-2023学年高二上学期期末考试数学试题
广西桂林市荔浦县荔城中学2022-2023学年高二上学期期末考试数学试题广东省广州市2022-2023学年高二上学期期末数学试题(已下线)模块五 专题1 期末全真模拟(基础卷1)高二期末安徽省马鞍山市第二中学2022-2023学年高二下学期开学考试数学试题
名校
解题方法
7 . 如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱的中点.
(2)求直线AB与平面所成角的正弦值.
(1)求证:;
(2)求直线AB与平面所成角的正弦值.
您最近一年使用:0次
2023-05-24更新
|
1161次组卷
|
21卷引用:广西南宁市第三中学2022-2023学年高二下学期期末考试试题
广西南宁市第三中学2022-2023学年高二下学期期末考试试题广东省惠州市2021-2022学年高二上学期期末数学试题黑龙江省五校2021-2022学年高二上学期期末联考数学试题广东省深圳市第七高级中学2021-2022学年高二上学期期末数学试题上海市奉贤中学2021-2022学年高二下学期期末数学试题甘肃省武威市古浪县第二中学2021-2022学年高二上学期期末考试数学(理)试题(已下线)海南省华东师范大学第二附属中学乐东黄流中学2022-2023学年高二上学期12月教学质量监测(期末)数学试题黑龙江省七台河市勃利县高级中学2022-2023学年高二上学期期末考试数学试题四川省南充高级中学2022-2023学年高二上学期期末考试数学(理科)试题广西玉林市第十一中学2023-2024学年高二上学期10月月考数学试题广西壮族自治区玉林市第十一中学2024-2025学年高二上学期10月月考数学试题黑龙江省双鸭山市第一中学2021-2022学年高二上学期期中数学试题黑龙江省大庆市东风中学2021-2022学年高二下学期开学考试数学试题上海市行知中学2021-2022学年高二下学期3月月考数学试题重庆市第八中学校2021-2022学年高二艺术班下学期第二次月考数学试题广东省湛江市第二十一中学2022-2023学年高二下学期期中数学试题(已下线)模块三 专题4 空间向量的应用1直线与平面的夹角、二面角 B能力卷(已下线)模块三 专题5 直线与平面的夹角、二面角 B能力卷 (人教B)河南省新乡市长垣市第一中学2023-2024学年高三上学期10月月考数学试题天津市滨海新区实验中学滨海学校2024届高三上学期期中质量调查数学试题(已下线)通关练04 空间向量与立体几何大题9考点精练(41题)- 【考点通关】2023-2024学年高二数学高频考点与解题策略(人教A版2019选择性必修第一册)
名校
解题方法
8 . 如图,四棱锥,底面为正方形,平面,为线段的中点.
(1)证明:;
(2)若,求直线与平面所成角的正弦值.
(1)证明:;
(2)若,求直线与平面所成角的正弦值.
您最近一年使用:0次
2022-12-31更新
|
808次组卷
|
4卷引用:广西壮族自治区梧州市苍梧中学2022-2023学年高二上学期期末数学试题
名校
解题方法
9 . 已知在正方体中,E,F,G分别是棱的中点.
(1)证明:与平面不平行;
(2)求直线与平面所成角的正弦值.
(1)证明:与平面不平行;
(2)求直线与平面所成角的正弦值.
您最近一年使用:0次
2022-06-02更新
|
211次组卷
|
3卷引用:广西南宁市2021-2022学年高二下学期期末联考数学(理)试题
10 . 如图所示,四边形为菱形,,二面角为直二面角,点是棱的中点.
(1)求证:;
(2)若,当二面角的正切值为时,求直线与平面所成的角.
(1)求证:;
(2)若,当二面角的正切值为时,求直线与平面所成的角.
您最近一年使用:0次
2022-03-24更新
|
487次组卷
|
2卷引用:广西贺州市2021-2022学年高一下学期期末质量检测数学试题