组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 4 道试题
2020高三·全国·专题练习
1 . 已知椭圆()的四个顶点组成的四边形的面积为,且经过点.过椭圆右焦点作直线与椭圆交于两点.
(1)求椭圆的方程;
(2)若,求直线的方程.
2020-12-06更新 | 2292次组卷 | 13卷引用:黑龙江省双鸭山市饶河县高级中学2021-2022学年高二上学期期末数学试题
2 . 已知椭圆C的离心率为,且过点
(1)求的方程:
(2)点上,且为垂足.证明:存在定点,使得为定值.
2020-07-09更新 | 48499次组卷 | 107卷引用:黑龙江省双鸭山市第一中学2020-2021学年高二上学期期中考试数学(理)试题
3 . 已知中心在原点,焦点在轴上,离心率为的椭圆过点.
(1)求椭圆方程;
(2)设不过原点O的直线,与该椭圆交于PQ两点,直线OPOQ的斜率依次为,满足,求的值.
2010·山东聊城·二模
4 . 已知椭圆经过点,离心率为.
(1)求椭圆的方程;
(2)设直线与椭圆交于,点关于轴的对称点不重合),则直线轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
共计 平均难度:一般