组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 7 道试题
1 . 已知分别是椭圆的左、右焦点,是椭圆上一点,且.
(1)求椭圆的方程;
(2)延长,并与椭圆分别相交于两点,求的面积.
2023-08-21更新 | 1361次组卷 | 6卷引用:云南省昆明市第十中学2024届高三上学期开学考试数学试题
2 . 已知椭圆的左焦点为,且点在椭圆C上.
(1)求椭圆C的方程;
(2)已知,点P为椭圆C上一点.
(ⅰ)若点P在第一象限内,延长线交y轴于点Q的面积之比为1∶2,求点P坐标;
(ⅱ)设直线与椭圆C的另一个交点为点B,直线与椭圆C的另一个交点为点D.设,求证:当点P在椭圆C上运动时,为定值.
2024-08-26更新 | 684次组卷 | 3卷引用:云南省祥云县第一中学2024-2025学年高三上学期开学见面考数学试卷
3 . 知椭圆E的左右焦点分别为,过且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为

(1)求椭圆E的方程;
(2)如图,下顶点为A,过点作一条与y轴不重合的直线.该直线交椭圆ECD两点.直线ADAC分别交x轴于点H求证:的面积之积为定值,并求出该定值.
2022-11-24更新 | 1163次组卷 | 19卷引用:云南省昆明市第一中学高中新课标2023届高三第一次摸底测试数学试题
4 . 已知椭圆的离心率为,且过点.
(1)求椭圆C的方程;
(2)若椭圆C的上顶点为P,过P的两条直线分别与C交于异于点PAB两点,若直线的斜率之和为,试判断直线是否过定点?若是,求出该定点;若不是,请说明理由.
智能选题,一键自动生成优质试卷~
5 . 已知椭圆E离心率为,且经过点.
(1)求椭圆E的方程;
(2)过点且斜率不为0的直线与椭圆C交于M,N两点,证明:直线与直线的斜率之积为定值.
6 . 如图所示,已知椭圆的离心率为,且过点

(1)求椭圆的方程;
(2)设在椭圆上,且轴平行,过作两条直线分别交椭圆于两点,直线平分,且直线过点,求四边形的面积.
2021-06-08更新 | 1444次组卷 | 5卷引用:云南省会泽县实验高级中学校2021-2022学年高二下学期开学考试数学试题
7 . 已知椭圆)的离心率为,且过点.
(1)求椭圆的标准方程
(2)分别过椭圆的左、右焦点作两条互相垂直的直线交于与椭圆交于AB两点,与椭圆交于CD两点
①求证:
②求证:定值.
2021-11-23更新 | 742次组卷 | 3卷引用:云南省玉溪第一中学2023-2024学年高二下学期开学考试数学试卷
共计 平均难度:一般