1 . 椭圆,过椭圆外一点作椭圆的两条切线,切点分别为和的夹角为.
(1)若,求此时的值;
(2)若,求证:随的增大而减小;
(3)是否存在圆,使得在其上做圆周运动时,始终可以保持?不论存在与否,均请说明理由.
(1)若,求此时的值;
(2)若,求证:随的增大而减小;
(3)是否存在圆,使得在其上做圆周运动时,始终可以保持?不论存在与否,均请说明理由.
您最近一年使用:0次
名校
解题方法
2 . 设常数且,椭圆:,点是上的动点.
(1)若点的坐标为,求的焦点坐标;
(2)设,若定点的坐标为,求的最大值与最小值;
(3)设,若上的另一动点满足(为坐标原点),求证:到直线PQ的距离是定值.
(1)若点的坐标为,求的焦点坐标;
(2)设,若定点的坐标为,求的最大值与最小值;
(3)设,若上的另一动点满足(为坐标原点),求证:到直线PQ的距离是定值.
您最近一年使用:0次
2021-12-23更新
|
1026次组卷
|
7卷引用:上海市嘉定区第二中学2022-2023学年高二上学期期中数学试题
上海市嘉定区第二中学2022-2023学年高二上学期期中数学试题上海市黄浦区2022届高三一模数学试题(已下线)上海市黄浦区2022届高三上学期一模数学试题(已下线)专题10.3—圆锥曲线—椭圆大题(定值问题)—2022届高三数学一轮复习精讲精练上海市崇明中学2021-2022学年高二下学期期中数学试题(已下线)押全国卷(理科)第20题 圆锥曲线-备战2022年高考数学(理)临考题号押题(全国卷)上海市格致中学2023-2024学年高二下学期期末考数学试卷
名校
解题方法
3 . 为了监测某海域的船舶航行情况,海事部门在该海域,设立了如图所示东西走向,相距海里的,两个观测站,观测范围是到,两观测站距离之和不超过海里的区域.
(1)以所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,求观测区域边界曲线的方程;
(2)某日上午7时,观测站B发现在其正东10海里的C处,有一艘轮船正以每小时8海里的速度向北偏西45°方向航行,问该轮船大约在什么时间离开观测区域?(精确到1小时).
(1)以所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,求观测区域边界曲线的方程;
(2)某日上午7时,观测站B发现在其正东10海里的C处,有一艘轮船正以每小时8海里的速度向北偏西45°方向航行,问该轮船大约在什么时间离开观测区域?(精确到1小时).
您最近一年使用:0次
2021-08-16更新
|
354次组卷
|
2卷引用:上海市嘉定区第一中学2021届高三下学期3月月考数学试题