组卷网 > 知识点选题 > 椭圆的弦长、焦点弦
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 524 道试题
1 . 已知,直线为平面内的一个动点,过点的垂线,垂足为,且,动点的轨迹记为曲线.
(1)求的方程;
(2)若直线两点,交圆两点,且,当的面积最大时,求的倾斜角.
2 . 已知椭圆的左、右焦点分别为,离心率为,点,且为等腰直角三角形.
(1)求椭圆的标准方程;
(2)设点上的一个动点,求面积的最大值;
(3)若直线交于两点,且,证明:直线过定点.
3 . 已知椭圆的离心率为;直线只有一个交点.
(1)求的方程;
(2)的左、右焦点分别为上的点两点在轴上方)满足.
①试判断为原点)是否成立,并说明理由;
②求四边形面积的最大值.
2024-05-29更新 | 347次组卷 | 1卷引用:2024届陕西省榆林市高三三模理数试题
4 . 已知椭圆的左右焦点分别为,点是其左右顶点,点上异于的点,满足直线的斜率之积为的周长为6.
(1)求椭圆的方程;
(2)直线过点,与椭圆交于两点,当外接圆面积最小时,求直线的方程.
2024-05-24更新 | 465次组卷 | 1卷引用:重庆康德卷2024年普通高等学校招生全国统一考试高三第二次联合诊断考试数学试题
智能选题,一键自动生成优质试卷~
5 . 已知在椭圆上,的左焦点在抛物线的准线上,的左顶点,直线分别与另交于两点,直线的斜率之积为.
(1)求的方程;
(2)求面积的最大值.
2024-05-23更新 | 162次组卷 | 1卷引用:浙江省培优联盟2023-2024学年高二下学期5月联考数学试题
6 . 已知椭圆的离心率为
(1)求的方程;
(2)过的右焦点的直线交于两点,与直线交于点,且,求的斜率.
7 . 已知椭圆的左、右焦点分别为为坐标原点,直线交于两点,点在第一象限,点在第四象限且满足直线与直线的斜率之积为.当垂直于轴时,
(1)求的方程;
(2)若点的左顶点且满足,直线交于,直线交于
①证明:为定值;
②证明:四边形的面积是面积的2倍.
2024-05-20更新 | 639次组卷 | 2卷引用:河北省石家庄市2024届高三教学质量检测(三)数学试卷
8 . 已知AB分别为椭圆的上下顶点,P为直线上的动点,且P不在椭圆上,与椭圆E的另一交点为C与椭圆E的另一交点为D,(CD均不与椭圆E上下顶点重合).
(1)证明:直线过定点;
(2)设(1)问中定点为Q,过点CD分别作直线的垂线,垂足分别为MN,记的面积分别为,试问:是否存在常数t,使得总为等比数列?若存在,求出t的值;若不存在,说明理由.
2024-05-16更新 | 183次组卷 | 1卷引用:贵州省2024届高三下学期4月新高考“大数据赋分”诊断性联合考试数学试题
9 . 已知椭圆的离心率为,中心是坐标原点,焦点在轴上,右焦点为FAB分别是的上、下顶点.的短半轴长是圆的半径,点是圆上的动点,且点不在轴上,延长BM交于点的取值范围为.
(1)求椭圆、圆的方程;
(2)当直线BM经过点时,求的面积;
(3)记直线AMAN的斜率分别为,证明:为定值.
2024-05-16更新 | 207次组卷 | 1卷引用:云南省2024届高中毕业生第二次复习统一检测数学试题
10 . 已知椭圆的离心率为,点在椭圆上,过点的直线与椭圆交于AB两点,直线PAPB与直线分别交于点MN
(1)求椭圆C的方程;
(2)若T为椭圆的上焦点,求面积取得最大值时直线的方程;
(3)若的外接圆经过原点,求的值.
2024-05-16更新 | 196次组卷 | 1卷引用:安徽省马鞍山市2024届高三下学期教学质量监测数学试题
共计 平均难度:一般