组卷网 > 知识点选题 > 概率
更多: | 只看新题 精选材料新、考法新、题型新的试题
解析
| 共计 11 道试题
1 . 某人投掷两枚骰子,取其中一枚的点数记为点的横坐标,另一枚的点数记为点的纵坐标,令事件”,事件为奇数”.
(1)证明:事件相互独立;
(2)若连续抛掷这两枚骰子三次,求点在圆内的次数的分布列与期望.
2024-05-23更新 | 352次组卷 | 1卷引用:河北省邯郸市2024届高三下学期高考保温数学试题
2 . 甲、乙两个篮球队在4次不同比赛中的得分情况如下:

甲队

88

91

93

96

乙队

89

94

97

92

(1)在4次比赛中,求甲队的平均得分;
(2)分别从甲、乙两队的4次比赛得分中各随机选取1次,求这2个比赛得分之差的绝对值为1的概率;
(3)甲,乙两队得分数据的方差分别记为,试判断的大小(结论不要求证明)
3 . 不粘锅是家庭常用的厨房用具,近期,某市消费者权益保护委员会从市场上购买了12款不粘锅商品,并委托第三方检测机构进行检测,本次选取了食物接触材料安全项目中与消费者使用密切相关的6项性能项目进行比较试验,性能检测项目包含不粘性、耐磨性、耐碱性、手柄温度、温度均匀性和使用体验等6个指标.其中消费者关注最多的两个指标“不沾性、耐磨性”检测结果的数据如下:

检测结果

检测结果

序号

品牌名称

不粘性

耐磨性

序号

品牌名称

不粘性

耐磨性

1

品牌1

Ⅰ级

Ⅰ级

7

品牌7

Ⅰ级

Ⅰ级

2

品牌2

Ⅱ级

Ⅰ级

8

品牌8

Ⅰ级

Ⅰ级

3

品牌3

Ⅰ级

Ⅰ级

9

品牌9

Ⅱ级

Ⅱ级

4

品牌4

Ⅱ级

Ⅱ级

10

品牌10

Ⅱ级

Ⅱ级

5

品牌5

Ⅰ级

Ⅰ级

11

品牌11

Ⅱ级

Ⅱ级

6

品牌6

Ⅱ级

Ⅰ级

12

品牌12

Ⅱ级

Ⅱ级

(Ⅰ级代表性能优秀,Ⅱ级代表性能较好)
(1)从这12个品牌的样本数据中随机选取两个品牌的数据,求这两个品牌的“不粘性”性能都是Ⅰ级的概率:
(2)从前六个品牌、后六个品牌中各随机选取两个品牌的数据,求两个指标“不沾性、耐磨性”都是Ⅰ级的品牌个数恰为2个的概率;
(3)顾客甲从品牌中随机选取1个品牌,用“”表示选取的品牌两个指标“不沾性、耐磨性”都是Ⅰ级,“”表示选取的品牌两个指标“不沾性、耐磨性”不都是Ⅰ级(k=1,4,7,10).写出方差的大小关系(结论不要求证明).
2023-12-11更新 | 239次组卷 | 2卷引用:专题7.7 随机变量及其分布全章十一大基础题型归纳(基础篇)-2023-2024学年高二数学举一反三系列(人教A版2019选择性必修第三册)
4 . 为研究中国工业机器人产量和销量的变化规律,收集得到了年工业机器人的产量和销量数据,如下表所示.

年份

产量万台

销量万台

年工业机器人产量的中位数为,销量的中位数为.定义产销率为“”.
(1)从年中随机取年,求工业机器人的产销率大于的概率;
(2)从年这年中随机取年,这年中有年工业机器人的产量不小于,有年工业机器人的销量不小于.记,求的分布列和数学期望
(3)从哪年开始的连续年中随机取年,工业机器人的产销率超过的概率最小.结论不要求证明
2024-05-16更新 | 784次组卷 | 1卷引用:北京市西城区2024届高三下学期5月模拟测试数学试卷
智能选题,一键自动生成优质试卷~

5 . 我国周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边的平方等于两直角边的平方之和.在3,4,5,6,8,10,12,13这8个数中任取3个数,这3个数恰好可以组成勾股定理关系的概率为(       

A.B.C.D.
2024-01-22更新 | 483次组卷 | 4卷引用:河北省张家口市2024届高三上学期期末数学试题
6 . 一个袋子中装有大小和质地相同的4个球,其中有2个红球(标号为1和2),2个白球(标号为3和4),甲、乙两人先后从袋中不放回地各摸出1个球.设“甲摸到红球”为事件,“乙摸到红球”为事件.
(1)小明同学认为:由于甲先摸球,所以事件发生的可能性大于发生的可能性.小明的判断是否正确,请说明理由;
(2)判断事件是否相互独立,并证明.
单选题 | 较易(0.85) |
名校
7 . 在如图所示的直角梯形中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之和等于直角梯形的面积”.可以简洁明了地推证出勾股定理,把这一证明方法称为“总统证法”.设,在梯形中随机取一点,则此点取自等腰直角三角形中(阴影部分)的概率是(       

A.B.C.D.
8 . 三国时期数学家赵爽为了证明勾股定理,创制了一幅如图所示的“弦图”,后人称之为“赵爽弦图”,它由四个全等的直角三角形和一个正方形构成.现对该图进行涂色,有5种不同的颜色提供选择,相邻区域所涂颜色不同.在所有的涂色方案中随机选择一种方案,该方案恰好只用到三种颜色的概率是(       

A.B.C.D.
2023-05-05更新 | 918次组卷 | 3卷引用:专题19 排列组合与二项式定理常考小题(20大题型)(练习)
9 . 第届冬季奥林匹克运动会于日在北京、张家口盛大开幕.为保障本届冬奥会顺利运行,共招募约万人参与赛会志愿服务.赛会共设对外联络服务、竞赛运行服务、媒体运行与转播服务、场馆运行服务、市场开发服务、人力资源服务、技术运行服务、文化展示服务、赛会综合服务、安保服务、交通服务、其他共类志愿服务.
(1)甲、乙两名志愿者被随机分配到不同类志愿服务中,每人只参加一类志愿服务.已知甲被分配到对外联络服务,求乙被分配到场馆运行服务的概率是多少?
(2)已知来自某中学的每名志愿者被分配到文化展示服务类的概率是,设来自该中学的名志愿者被分配到文化展示服务类的人数为,求的分布列与期望;
(3)万名志愿者中,岁人群占比达到,为了解志愿者对某一活动方案是否支持,通过分层抽样获得如下数据:
岁人群其它人群
支持不支持支持不支持
方案
假设所有志愿者对活动方案是否支持相互独立.将志愿者支持方案的概率估计值记为,去掉其它人群志愿者,支持方案的概率估计值记为,试比较的大小.(结论不要求证明)
10 . 在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):
甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
乙:9.78,9.56,9.51,9.36,9.32,9.23;
丙:9.85,9.65,9.20,9.16.
假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望EX);
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
2022-06-07更新 | 17179次组卷 | 35卷引用:第07讲 离散型随机变量的分布列与数字特征(练习)
共计 平均难度:一般