组卷网 > 知识点选题 >
更多: 只看新题 精选材料新、考法新、题型新的试题
解析
共计 7 道试题
1 . 某地经过多年的环境治理,已将荒山改造成了绿水青山,为估计一林区某种树木的总材积量.随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i12345678910总和
根部横截面积0.040.060.040.030.080.050.050.070.070.060.6
材积量0.250.400.220.540.510.340.360.460.420.403.9
并计算得
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01).
附:相关系数
2024-04-04更新 | 647次组卷 | 6卷引用:河南省灵宝市第三高级中学2023-2024学年高二下学期精英对抗赛数学试题
2 . 如果将一组数据5、4、6、5、4、13、5依次重复写10次,会得到70个数组成的一组新数据,关于这组新数据的中位数、众数、平均数,下列说法正确的是(  )
A.中位数和众数都是5B.众数是10
C.中位数是4D.中位数、平均数都是5
2024-01-26更新 | 418次组卷 | 9卷引用:湖南省邵阳市2023-2024学年高一上学期拔尖创新人才早期培养竞赛(初赛)数学试题
3 . 为了增强学生的国防意识,某中学组织了一次国防知识竞赛,高一和高二两个年级学生参加知识竞赛,
(1)两个年级各派50名学生参加国防知识初赛,成绩均在区间上,现将成绩制成如图所示频率分布直方图(每组均包括左端点,最后一组包括右端点),估计学生的成绩的平均分(若同一组中的数据用该组区间的中点值为代表);

(2)两个年级各派一位学生代表参加国防知识决赛,决赛的规则如下:①决赛一共五轮,在每一轮中,两位学生各回答一次题目,两队累计答对题目数量多者胜;若五轮答满,分数持平,则并列为冠军;②如果在答满5轮前,其中一方答对题目数量已经多于另一方答满5次题可能答对的题目数量,则不需再答题,譬如:第3轮结束时,双方答对题目数量比为,则不需再答第4轮了;③设高一年级的学生代表甲答对比赛题目的概率是,高二年级的学生代表乙答对比赛题目的概率是,每轮答题比赛中,答对与否互不影响,各轮结果也互不影响
(i)在一次赛前训练中,学生代表甲同学答了3轮题,且每次答题互不影响,记为答对题目的数量,求的分布列及数学期望
(ii)求在第4轮结束时,学生代表甲答对3道题并刚好胜出的概率
4 . 某大学为了解学生对两家餐厅的满意度情况,从在两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行满意指数打分(满意指数是指学生对餐厅满意度情况的打分,分数设置为.根据打分结果按分组,得到如图所示的频率分布直方图,其中餐厅满意指数在中有30人.

(1)求餐厅满意指数频率分布直方图中的值;
(2)利用样本估计总体的思想,估计餐厅满意指数和餐厅满意指数的平均数及方差(同一组中的数据用该组区间中点值作代表);
参考公式:,其中的平均数,分别为对应的频率.
(3)如果一名新来同学打算从两家餐厅中选择一个用餐,你建议选择哪个餐厅?说明理由.
2022-01-19更新 | 1424次组卷 | 7卷引用:山东省高密市第一中学2023-2024学年高一上学期冬学竞赛数学试题
13-14高二上·湖北武汉·期末
填空题-单空题 | 较易(0.85) |
名校
5 . 某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为_____
2019-06-24更新 | 4231次组卷 | 42卷引用:第十一届高二试题(A卷)-“枫叶新希望杯”全国数学大赛真题解析(高中版)
6 . 从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
9-10高一下·陕西延安·期末
填空题-单空题 | 容易(0.94) |
名校
7 . 已知样本的平均数是,标准差是,则________.
2016-12-02更新 | 1826次组卷 | 26卷引用:第八届高二试题(A卷)-“枫叶新希望杯”全国数学大赛真题解析(高中版)
共计 平均难度:一般